1
|
Tiwari M, Gautam N, Indoliya Y, Kidwai M, Mishra AK, Chakrabarty D. A tau class GST, OsGSTU5, interacts with VirE2 and modulates the Agrobacterium-mediated transformation in rice. PLANT CELL REPORTS 2022; 41:873-891. [PMID: 35067774 DOI: 10.1007/s00299-021-02824-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
OsGSTU5 interacts and glutathionylates the VirE2 protein of Agrobacterium and its (OsGSTU5) overexpression and downregulation showed a low and high AMT efficiency in rice, respectively. During Agrobacterium-mediated transformation (AMT), T-DNA along with several virulence proteins such as VirD2, VirE2, VirE3, VirD5, and VirF enter the plant cytoplasm. VirE2 serves as a single-stranded DNA binding (SSB) protein that assists the cytoplasmic trafficking of T-DNA inside the host cell. Though the regulatory roles of VirE2 have been established, the cellular reaction of their host, especially in monocots, has not been characterized in detail. This study identified a cellular interactor of VirE2 from the cDNA library of rice. The identified plant protein encoded by the gene cloned from rice was designated OsGSTU5, it interacted specifically with VirE2 in the host cytoplasm. OsGSTU5 was upregulated during Agrobacterium infection and involved in the post-translational glutathionylation of VirE2 (gVirE2). Interestingly, the in silico analysis showed that the 'gVirE2 + ssDNA' complex was structurally less stable than the 'VirE2 + ssDNA' complex. The gel shift assay also confirmed the attenuated SSB property of gVirE2 over VirE2. Moreover, knock-down and overexpression of OsGSTU5 in rice showed increased and decreased T-DNA expression, respectively after Agrobacterium infection. The present finding establishes the role of OsGSTU5 as an important target for modulation of AMT efficiency in rice.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yuvraj Indoliya
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Hassanein A, Hamama L, Loridon K, Dorion N. Direct gene transfer study and transgenic plant regeneration after electroporation into mesophyll protoplasts of Pelargonium x hortorum, 'Panaché Sud'. PLANT CELL REPORTS 2009; 28:1521-1530. [PMID: 19652973 DOI: 10.1007/s00299-009-0751-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 05/28/2023]
Abstract
Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium x hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-microF capacitor in a 250-V cm(-1) electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33-36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 microS cm(-1) allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l(-1) kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l(-1) kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.
Collapse
|
3
|
Hensgens LA, de Bakker EP, van Os-Ruygrok EP, Rueb S, van de Mark F, van der Maas HM, van der Veen S, Kooman-Gersmann M, Hart L, Schilperoort RA. Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. PLANT MOLECULAR BIOLOGY 1993; 23:643-669. [PMID: 8251621 DOI: 10.1007/bf00021522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transcriptional and translational fusions were made between the reading frame coding for beta-D-glucuronidase and sequences of either a constitutively expressed rice gene (GOS2) involved in initiation of translation or a light-inducible rice gene (GOS5). The transient expression of the fusions was studied via particle bombardment of seedling tissues of rice, perennial ryegrass and barley. Furthermore, the results of transient and stable expression were compared for cell suspensions of four rice varieties, one barley variety and one perennial ryegrass variety. The GOS2-gusA fusions were active in all three monocots studied. Best results were obtained for a construct having both a transcriptional and a translational fusion as well as intron and exon sequences (PORCEHyg). The level of GUS activity was in the range of activities as obtained by the 35S CaMV promoter transcriptionally fused to gusA. The gusA fusion with the light-inducible gene (GOS5) was active in green seedling tissues of all monocots studied. Also a weak expression compared to the GOS2 constructs was found in stably transformed rice callus. The gusA fusions with the mannopine synthase promoters 1' and 2' of the TR-DNA were transiently expressed at lower levels in cell suspensions than PORCEHyg. For stably transformed rice callus the expression of the GOS2-gusA fusion often decreased during prolonged subculture. This decrease in GUS activity and the various GUS-staining phenotypes of transgenic calli are explained by the presence of different cell types in the suspensions used and in the calli. It is presumed that the nature of the cells and their relative contribution in the calli change drastically upon further subculture.
Collapse
Affiliation(s)
- L A Hensgens
- Institute of Molecular Plant Sciences, Leiden University, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hensgens LA, de Bakker EP, van Os-Ruygrok EP, Rueb S, van de Mark F, van der Maas HM, van der Veen S, Kooman-Gersmann M, Hart L, Schilperoort RA. Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. PLANT MOLECULAR BIOLOGY 1993; 22:1101-1127. [PMID: 8400127 DOI: 10.1007/bf00028980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transcriptional and translational fusions were made between the reading frame coding for beta-D-glucuronidase and sequences of either a constitutively expressed rice gene (GOS2) involved in initiation of translation or a light-inducible rice gene (GOS5). The transient expression of the fusions was studied via particle bombardment of seedling tissues of rice, perennial ryegrass and barley. Furthermore, the results of transient and stable expression were compared for cell suspensions of four rice varieties, one barley variety and one perennial ryegrass variety. The GOS2-gusA fusions were active in all three monocots studied. Best results were obtained for a construct having both a transcriptional and a translational fusion as well as intron and exon sequences (PORCEHyg). The level of GUS activity was in the range of activities as obtained by the 35S CaMV promoter transcriptionally fused to gusA. The gusA fusion with the light-inducible gene (GOS5) was active in green seedling tissues of all monocots studied. Also a weak expression compared to the GOS2 constructs was found in stably transformed rice callus. The gusA fusions with the mannopine synthase promoters 1' and 2' of the TR-DNA were transiently expressed at lower levels in cell suspensions than PORCEHyg. For stably transformed rice callus the expression of the GOS2-gusA fusion often decreased during prolonged subculture. This decrease in GUS activity and the various GUS-staining phenotypes of transgenic calli are explained by the presence of different cell types in the suspensions used and in the calli. It is presumed that the nature of the cells and their relative contribution in the calli change drastically upon further subculture.
Collapse
Affiliation(s)
- L A Hensgens
- Institute of Molecular Plant Sciences, Clusius Laboratory, Leiden University, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lazzeri PA, Brettschneider R, Lührs R, Lörz H. Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 81:437-444. [PMID: 24221308 DOI: 10.1007/bf00219433] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/1990] [Accepted: 09/05/1990] [Indexed: 06/02/2023]
Abstract
Protoplasts isolated from a barley cell suspension (cv Dissa) were transformed with plasmid DNA containing the neomycinphosphotransferase II (NPT) and β-glucuronidase (GUS) genes, using polyethyleneglycol (PEG) to induce DNA uptake. Transformed microcalli were selected in media containing G418 sulphate. NPT activity was detected in all antibiotic-resistant cell lines, but not all NPT-positive cell lines had GUS activity. Southern analysis confirmed the presence of sequences homologous to the APT and GUS genes in DNA of G418-resistant callus.
Collapse
Affiliation(s)
- P A Lazzeri
- Institute for General Botany (AMP II), University of Hamburg, Ohnhorststrasse 18, 52, Hamburg, FRG
| | | | | | | |
Collapse
|
6
|
Battraw MJ, Hall TC. Histochemical analysis of CaMV 35S promoter-beta-glucuronidase gene expression in transgenic rice plants. PLANT MOLECULAR BIOLOGY 1990; 15:527-38. [PMID: 2102372 DOI: 10.1007/bf00017828] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cauliflower mosaic virus promoter is commonly used to drive transcription of chimeric genes in transgenic plants, including the cereals. To determine the tissue and cell types of cereal plants that the promoter functions in, transgenic rice plants containing a CaMV 35S promoter/GUS chimeric gene were analyzed for GUS activity. Insertion of a 35S/GUS chimeric gene at low copy number into chromosomal DNA of plants regenerated from electroporated protoplasts was confirmed by gel blot hybridization analysis of uncut and endonuclease-digested DNA. Quantitative measurement showed that GUS activity was some tenfold higher in rice leaves than in tobacco leaves whereas activities obtained for rice roots were similar to those reported for tobacco roots. Histochemical localization of GUS activity confirmed that the CaMV 35S promoter functions in cells of the leaf epidermis, mesophyll and vascular bundle. It is also active in the cortex and vascular cylinder of the root, but only marginally active in the root epidermis. The generally similar distribution and levels of GUS activity obtained in differentiated tissue of stably transformed rice plants indicates the value of the CaMV 35S promoter as a positive control for studies in gene activity in transgenic monocots and dicots.
Collapse
Affiliation(s)
- M J Battraw
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | |
Collapse
|
7
|
Saleh NM, Gupta HS, Finch RP, Cocking EC, Mulligan BJ. Stability of mitochondrial DNA in tissue-cultured cells of rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1990; 79:342-346. [PMID: 24226352 DOI: 10.1007/bf01186077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/1989] [Accepted: 10/20/1989] [Indexed: 06/02/2023]
Abstract
Restriction analysis of mitochondrial (mt) DNA from 3-month-old callus cultures of the cytoplasmic male sterile rice, V41A, which contains S2 or "wild abortive" cytoplasm, and its fertile maintainer, V41B, showed the same BamHI restriction profiles as mtDNA from the corresponding leaf material. Similarly, mtDNA of rice (var. Taipei 309) from leaves, a 2-month-old cell suspension (T3MS2/A), a totipotent suspension (T3MS) and a 19-month-old suspension, which had lost its protoplast regeneration ability (LB3), showed indistinguishable BamHI restriction profiles. However, clear differences in mtDNA restriction profiles were observed between LB3 and a 30-month-old suspension culture of Taipei 309 (LB1), which appeared to reflect substantial changes in the relative abundance of specific DNA sequences. Hybridisation of a maizecoxII gene probe to blots of restricted mtDNA confirmed that, while the relative abundance of certain mtDNA sequences was preserved during long-term tissue culture of rice, major changes in abundance were observed with other sequences.
Collapse
Affiliation(s)
- N M Saleh
- Department of Botany, University of Nottingham, NG7 2RD, University Park, Nottingham, UK
| | | | | | | | | |
Collapse
|
8
|
Spencer TM, Gordon-Kamm WJ, Daines RJ, Start WG, Lemaux PG. Bialaphos selection of stable transformants from maize cell culture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1990; 79:625-31. [PMID: 24226576 DOI: 10.1007/bf00226875] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/1989] [Accepted: 12/12/1989] [Indexed: 05/19/2023]
Abstract
Stable transformed Black Mexican Sweet (BMS) maize callus was recovered from suspension culture cells bombarded with plasmid DNA that conferred resistance to the herbicide bialaphos. Suspension culture cells were bombarded with a mixture of two plasmids. One plasmid contained a selectable marker gene, bar, which encoded phosphinothricin acetyl transferase (PAT), and the other plasmid encoded a screenable marker for β-glucuronidase (GUS). Bombarded cells were selected on medium containing the herbicide bialaphos, which is cleaved in plant cells to yield phosphinothricin (PPT), an inhibitor of glutamine synthetase. The bialaphos-resistant callus contained the bar gene and expressed PAT as assayed by PPT inactivation. Transformants that expressed high levels of PAT grew more rapidly on increasing concentrations of bialaphos than transformants expressing low levels of PAT. Fifty percent of the bialaphos-resistant transformants tested (8 of 16) expressed the nonselected gene encoding GUS.
Collapse
Affiliation(s)
- T M Spencer
- Plant Genetics Research, DeKalb-Pfizer Genetics, 06340, Groton, CT, USA
| | | | | | | | | |
Collapse
|
9
|
Chand PK, Rech EL, Golds TJ, Power JB, Davey MR. Electroporation stimulates tranformation of freshly isolated cell suspension protoplasts ofSolanum dulcamara byAgrobacterium. PLANT CELL REPORTS 1989; 8:86-89. [PMID: 24232991 DOI: 10.1007/bf00716845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/1988] [Revised: 02/28/1989] [Indexed: 06/02/2023]
Abstract
Freshly isolated cell suspension protoplasts ofSolanum dulcamara were mixed withAgrobacterium rhizogenes, allowed to settle for 2 h, exposed to electrical pulses and further incubated for 2h. Two pulses of 600 V cm(-1) for 2 msec separated by 15 sec produced transformed colonies at relative and absolute transformation frequencies which were 3-4 and 10 fold greater than those obtained by co-cultivation of 3 days old protoplast-derived cells with bacteria. Transformed colonies were not produced when freshly isolated protoplasts were mixed withAgrobacterium but not electroporated. Biochemical analysis confirmed the transgenic nature of plants regenerated from protoplast-derived tissues.
Collapse
Affiliation(s)
- P K Chand
- Plant Genetic Manipulation Group, Department of Botany, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|