1
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
2
|
Kalimuthu P, Kruse T, Bernhardt PV. Deconstructing the electron transfer chain in a complex molybdoenzyme: Assimilatory nitrate reductase from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148358. [PMID: 33359308 DOI: 10.1016/j.bbabio.2020.148358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Nitrate reductase (NR) from the fungus Neurospora crassa is a complex homodimeric metallo-flavoenzyme, where each protomer contains three distinct domains; the catalytically active terminal molybdopterin cofactor, a central heme-containing domain, and an FAD domain which binds with the natural electron donor NADPH. Here, we demonstrate the catalytic voltammetry of variants of N. crassa NRs on a modified Au electrode with the electrochemically reduced forms of benzyl viologen (BV2+) and anthraquinone sulfonate (AQS-) acting as artificial electron donors. The biopolymer chitosan used to entrap NR on the electrode non-covalently and the enzyme film was both stable and highly active. Electrochemistry was conducted on two distinct forms; one lacking the FAD cofactor and the other lacking both the FAD and heme cofactors. While both enzymes showed catalytic nitrate reductase activity, removal of the heme cofactor resulted in a more significant effect on the rate of nitrate reduction. Electrochemical simulation was carried out to enable kinetic characterisation of both the NR:nitrate and NR:mediator reactions.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
3
|
Morozkina EV, Zvyagilskaya RA. Nitrate reductases: structure, functions, and effect of stress factors. BIOCHEMISTRY (MOSCOW) 2008; 72:1151-60. [PMID: 18021072 DOI: 10.1134/s0006297907100124] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural and functional peculiarities of four types of nitrate reductases are considered: assimilatory nitrate reductase of eukaryotes, as well as cytoplasmic assimilatory, membrane-bound respiratory, and periplasmic dissimilatory bacterial nitrate reductases. Arguments are presented showing that eukaryotic organisms are capable of nitrate dissimilation. Data concerning new classes of extremophil nitrate reductases, whose active center does not contain molybdocofactor, are summarized.
Collapse
Affiliation(s)
- E V Morozkina
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | |
Collapse
|
4
|
Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V. Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol Genet Genomics 2003; 269:807-16. [PMID: 12898221 DOI: 10.1007/s00438-003-0894-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 06/30/2003] [Indexed: 11/28/2022]
Abstract
The nitrate assimilation pathway represents a useful model system in which to study the contribution of a mycorrhizal fungus to the nitrogen nutrition of its host plant. In the present work we cloned and characterized the nitrate reductase gene (tbnr1) from Tuber borchii. The coding region of tbnr1 is 2,787 nt in length, and it encodes a protein of 929 amino acids. Biochemical and Northern-blot analyses revealed that nitrate assimilation in T. borchii is an inducible system that responds mainly to nitrate. Furthermore, we cloned a nitrate reductase cDNA (tpnr1) from Tilia platyphyllos to set up a quantitative real-time PCR assay that would allow us to determine the fungal contribution to nitrate assimilation in ectomycorrhizal tissue. Using this approach we demonstrated that the level of tbnr1 expression in ectomycorhizae is eight times higher than in free-living mycelia, whereas tpnr1 transcription was found to be down-regulated after the establishment of the symbiosis. Enzymatic assays showed that NADPH-dependent nitrite formation markedly increases in ectomycorrhizae. These findings imply that the fungal partner plays a fundamental role in nitrate assimilation by ectomycorrhizae. Amino acid determination by HPLC revealed higher levels of glutamate, glutamine and asparagine in symbiotic tissues compared with mycelial controls, thus suggesting that these amino acids may represent the compounds that serve to transfer nitrogen to the host plant.
Collapse
Affiliation(s)
- M Guescini
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino, Via Saffi 2, 61029 Urbino (PU), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.
Collapse
Affiliation(s)
- José M Siverio
- Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
6
|
Barber MJ, Desai SK, Marohnic CC, Hernandez HH, Pollock VV. Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase. Arch Biochem Biophys 2002; 402:38-50. [PMID: 12051681 DOI: 10.1016/s0003-9861(02)00035-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Assimilatory NADH:nitrate reductase (EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)-, and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. A codon-optimized gene has been synthesized for expression of the central cytochrome b(557)-containing fragment, corresponding to residues A542-E658, of spinach assimilatory nitrate reductase. While expression of the full-length synthetic gene in Escherichia coli did not result in significant heme domain production, expression of a Y647* truncated form resulted in substantial heme domain production as evidenced by the generation of "pink" cells. The histidine-tagged heme domain was purified to homogeneity using a combination of NTA-agarose and size-exclusion FPLC, resulting in a single protein band following SDS-PAGE analysis with a molecular mass of approximately 13 kDa. MALDI-TOF mass spectrometry yielded an m/z ratio of 12,435 and confirmed the presence of the heme prosthetic group (m/z=622) while cofactor analysis indicated a 1:1 heme to protein stoichiometry. The oxidized heme domain exhibited spectroscopic properties typical of a b-type cytochrome with a visible Soret maximum at 413 nm together with epr g-values of 2.98, 2.26, and 1.49, consistent with low-spin bis-histidyl coordination. Oxidation-reduction titrations of the heme domain indicated a standard midpoint potential (E(o)') of -118 mV. The isolated heme domain formed a 1:1 complex with cytochrome c with a K(A) of 7 microM (micro=0.007) and reconstituted NADH:cytochrome c reductase activity in the presence of a recombinant form of the spinach nitrate reductase flavin domain, yielding a k(cat) of 1.4 s(-1) and a K(m app) for cytochrome c of 9 microM. These results indicate the efficient expression of a recombinant form of the heme domain of spinach nitrate reductase that retained the spectroscopic and thermodynamic properties characteristic of the corresponding domain in the native spinach enzyme.
Collapse
Affiliation(s)
- Michael J Barber
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
In the fungi, nitrogen metabolism is controlled by a complex genetic regulatory circuit which ensures the preferential use of primary nitrogen sources and also confers the ability to use many different secondary nitrogen sources when appropriate. Most structural genes encoding nitrogen catabolic enzymes are subject to nitrogen catabolite repression, mediated by positive-acting transcription factors of the GATA family of proteins. However, certain GATA family members, such as the yeast DAL80 factor, act negatively to repress gene expression. Selective expression of the genes which encode enzymes for the metabolism of secondary nitrogen sources is often achieved by induction, mediated by pathway-specific factors, many of which have a GAL4-like C6/Zn2 DNA binding domain. Regulation within the nitrogen circuit also involves specific protein-protein interactions, as exemplified by the specific binding of the negative-acting NMR protein with the positive-acting NIT2 protein of Neurospora crassa. Nitrogen metabolic regulation appears to play a significant role in the pathogenicity of certain animal and plant fungal pathogens.
Collapse
Affiliation(s)
- G A Marzluf
- Department of Biochemistry, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
8
|
González C, Brito N, Marzluf GA. Functional analysis by site-directed mutagenesis of individual amino acid residues in the flavin domain of Neurospora crassa nitrate reductase. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:456-64. [PMID: 8552051 DOI: 10.1007/bf00287108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3- null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.
Collapse
Affiliation(s)
- C González
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
9
|
Avila J, Pérez MD, Brito N, González C, Siverio JM. Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 1995; 366:137-42. [PMID: 7789531 DOI: 10.1016/0014-5793(95)00511-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nitrate reductase gene (YNR1) from the yeast H. polymorpha was isolated from a lambda EMBL3 genomic DNA library. As probe a 350 bp DNA fragment synthesized by PCR from H. polymorpha cDNA was used. By DNA sequencing an ORF of 2,577 bp was found. The predicted protein has 859 amino acids and presents high identity with nitrate reductases from other organisms. Chromosomal disruption of YNR1 causes inability to grow in nitrate. Northern blot analysis showed that YNR1 expression is induced by nitrate and repressed by ammonium.
Collapse
Affiliation(s)
- J Avila
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Canarias, Spain
| | | | | | | | | |
Collapse
|
10
|
Garde J, Kinghorn JR, Tomsett AB. Site-directed mutagenesis of nitrate reductase from Aspergillus nidulans. Identification of some essential and some nonessential amino acids among conserved residues. J Biol Chem 1995; 270:6644-50. [PMID: 7896804 DOI: 10.1074/jbc.270.12.6644] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nitrate reductase is a multiredox enzyme possessing three functional domains associated with the prosthetic groups FAD, heme iron, and molybdopterin. In Aspergillus nidulans, it is encoded by the niaD gene. A homologous transformation system has been used whereby a major deletion at the niiAniaD locus of the host was repaired by gene replacement. Employing site-directed mutagenesis and this transformation system, nine niaD mutants were generated carrying specific amino acid substitutions. Mutants in which alanine replaced cysteine 150, which is thought to bind the molybdenum atom of the molybdenum-pterin, and in which alanine replaced histidine 547, which putatively binds heme iron, had no detectable nitrate reductase (NAR) activity. This clearly establishes an essential catalytic role for these residues. Of the remaining mutants, all altered in the NADPH/FAD domain, two were temperature-sensitive for NAR activity, two had reduced NAR activity levels, and three had normal levels. Since some of these mutants change residues conserved between homologous nitrate reductases from a wide range of species, it is clear that such amino acid identities do not necessarily signify essential roles for the activity of the enzyme. These findings are considered in the light of predicted structural/functional roles for the altered amino acids.
Collapse
Affiliation(s)
- J Garde
- Department of Genetics and Microbiology, University of Liverpool, United Kingdom
| | | | | |
Collapse
|
11
|
Williams RS, Davis MA, Howlett BJ. Nitrate reductase of the ascomycetous fungus, Leptosphaeria maculans: gene sequence and chromosomal location. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:1-8. [PMID: 8041355 DOI: 10.1007/bf00280180] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrate reductase (niaD) gene was isolated from the phytopathogenic loculoascomycete Leptosphaeria maculans by screening a genomic DNA library with the Aspergillus nidulans niaD gene. The L. maculans niaD gene is the first protein-encoding gene characterised from this fungus. It encodes a predicted protein of 893 amino acids and contains four putative introns at positions in the gene equivalent to those of four of the six introns in the A. nidulans niaD gene. Mutants defective in niaD and molybdenum cofactor gene(s) of L. maculans have been isolated. Transformation of a L. maculans niaD mutant with a 3.8 kb SacII fragment containing the L. maculans niaD gene restored wild-type growth on nitrate as a sole nitrogen source. The niaD gene is present as a single copy on a chromosome which ranges in size from 2.6 to 2.8 Mb between the different L. maculans isolates examined.
Collapse
Affiliation(s)
- R S Williams
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
12
|
Abstract
The family of b5-like cytochromes encompasses, besides cytochrome b5 itself, hemoprotein domains covalently associated with other redox proteins, in flavocytochrome b2 (L-lactate dehydrogenase), sulfite oxidase and assimilatory nitrate reductase. A comparison of about 40 amino acid sequences deposited in data banks shows that eight residues are invariant and about 15 positions carry strongly conservative substitutions. Examination of the location of these invariant and conserved positions in the light of the three-dimensional structures of beef cytochrome b5 and S cerevisiae flavocytochrome b2 suggests a strongly conserved protein structure for the b5-like heme-binding domain throughout evolution. Numerous NMR studies have demonstrated the existence of a positional isomerism for the heme, which involves both a 180 degree-rotation around the heme alpha,gamma-meso carbon atoms and a rotation through an axis normal to the heme plane at the iron. NMR studies did not detect significant differences in protein structure between reduced and oxidized states, or between species. The role of a number of side chains was probed by site-directed mutagenesis. Studies of complex formation and of electron transfer rates between cytochrome b5 and redox partners have led to the idea that complexation is driven by electrostatic forces, that it is generally the exposed heme edge which makes contact with electron donors and acceptors, but that there are multiple overlapping sites within this general area. For the bi- and trifunctional members of the family, extrapolation of available data would suggest a mobile heme-binding domain within a complex structure. In these cases the existence of a single interaction area for both electron donor and acceptor, or of two different ones, remains open to discussion.
Collapse
Affiliation(s)
- F Lederer
- CNRS-URA 1461, Hôpital Necker, Paris, France
| |
Collapse
|