1
|
Abstract
Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.
Collapse
Affiliation(s)
- Katina Lazarow
- Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | |
Collapse
|
2
|
Qu S, Jeon JS, Ouwerkerk PBF, Bellizzi M, Leach J, Ronald P, Wang GL. Construction and application of efficient Ac-Ds transposon tagging vectors in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:982-992. [PMID: 19903220 DOI: 10.1111/j.1744-7909.2009.00870.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transposons are effective mutagens alternative to T-DNA for the generation of insertional mutants in many plant species including those whose transformation is inefficient. The current strategies of transposon tagging are usually slow and labor-intensive and yield low frequency of tagged lines. We have constructed a series of transposon tagging vectors based on three approaches: (i) AcTPase controlled by glucocorticoid binding domain/VP16 acidic activation domain/Gal4 DNA-binding domain (GVG) chemical-inducible expression system; (ii) deletion of AcTPase via Cre-lox site-specific recombination that was initially triggered by Ds excision; and (iii) suppression of early transposition events in transformed rice callus through a dual-functional hygromycin resistance gene in a novel Ds element (HPT-Ds). We tested these vectors in transgenic rice and characterized the transposition events. Our results showed that these vectors are useful resources for functional genomics of rice and other crop plants. The vectors are freely available for the community.
Collapse
Affiliation(s)
- Shaohong Qu
- Department of Plant Pathology, Ohio State University, Columbus OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. PLANT CELL REPORTS 2007; 26:1195-203. [PMID: 17340093 DOI: 10.1007/s00299-007-0307-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 12/05/2006] [Accepted: 01/11/2007] [Indexed: 05/14/2023]
Abstract
Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter.
Collapse
Affiliation(s)
- Xuelian Zheng
- Department of Plant Science, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Panjabi P, Burma PK, Pental D. Use of the transposable element Ac/Ds in conjunction with Spm/dSpm for gene tagging allows extensive genome coverage with a limited number of starter lines: functional analysis of a four-element system in Arabidopsis thaliana. Mol Genet Genomics 2006; 276:533-43. [PMID: 17004082 DOI: 10.1007/s00438-006-0158-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/07/2006] [Indexed: 11/26/2022]
Abstract
We have developed a novel four-element based gene tagging system in Arabidopsis to minimize the number of starter lines required to generate genome-wide insertions for saturation mutagenesis. In this system, the non-autonomous cassette, Ds(dSpm), comprises of both Ds and dSpm elements cloned one within the other along with appropriate selection markers to allow efficient monitoring of excision and re-integration of the transposons. Trans-activation of the outer borders (Ds) and selection against the negative selection marker (iaaH) linked to the cassette ensures unlinked spread of the Ds(dSpm) cassette from the initial site of integration of the T-DNA. This creates several launch pads within the genome from where the internal element (dSpm) can be subsequently mobilized to generate secondary insertions. In this study, starting from a single T-DNA integration we could spread the Ds(dSpm) cassette to 11 different locations over all the five chromosomes of Arabidopsis. The frequency of unlinked Ds transpositions in the F2 generation varied between 0.05 and 3.35%. Three of these lines were then deployed to trans-activate the internal dSpm element which led to the selection of 29 dSpm insertions. The study conclusively shows the feasibility of deploying Ds and the dSpm elements in a single construct for insertional mutagenesis.
Collapse
Affiliation(s)
- Priya Panjabi
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | |
Collapse
|
5
|
Jin WZ, Wang SM, Xu M, Duan RJ, Wu P. Characterization of enhancer trap and gene trap harboring Ac/Ds transposon in transgenic rice. JOURNAL OF ZHEJIANG UNIVERSITY. SCIENCE 2004; 5:390-399. [PMID: 14994426 DOI: 10.1631/jzus.2004.0390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insertion mutagenesis has become one of the most popular methods for gene functions analysis. Here we report a two-element Ac/Ds transposon system containing enhancer trap and gene trap for gene tagging in rice. The excision of Ds element was examined by PCR amplification. The excision frequency of Ds element varied from 0% to 40% among 20 F(2) populations derived from 11 different Ds parents. Southern blot analysis revealed that more than 70% of excised Ds elements reinserted into rice genome and above 70% of the reinserted Ds elements were located at different positions of the chromosome in rice. The result of histochemical GUS analysis indicated that 28% of enhancer trap and 22% of gene trap tagging plants displayed GUS activity in leaves, roots, flowers or seeds. The GUS positive lines will be useful for identifying gene function in rice.
Collapse
Affiliation(s)
- Wei-zheng Jin
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
6
|
Page DR, Köhler C, Da Costa-Nunes JA, Baroux C, Moore JM, Grossniklaus U. Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:2969-74. [PMID: 14981243 PMCID: PMC365729 DOI: 10.1073/pnas.0400089101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Indexed: 11/18/2022] Open
Abstract
Transposon activity is known to cause chromosome rearrangements in the host genome. Surprisingly, extremely little is known about Dissociation (Ds)-induced chromosome rearrangements in Arabidopsis, where Ds is intensively used for insertional mutagenesis. Here, we describe three Arabidopsis mutants with reduced fertility and propose that excision of a hybrid Ds element induced a large genomic deletion flanking Ds. In the mutants anat and haumea, the deletion mechanism consists of a local Ds transposition from replicated into unreplicated DNA followed by Ds excision, where one end of the newly transposed element and one end of the Ds transposon at the donor site served as substrate for transposase. Excision of this hybrid element reminiscent of a macrotransposon leads to loss of the chromosomal piece located between the two ends, including one full Ds element and the flanking genomic sequence. This mechanism was found to be responsible for several other deletions and occurs at a genetically trackable frequency. Thus, it could be applied to efficiently generate deletions of various sizes in the vicinity of any existing Ds element present in the genome. In the mutant tons missing, a mechanism that involves endogenous repetitive sequences caused a large flanking deletion at a position unlinked to the starter locus. Our study of Ds transposition in Arabidopsis revealed previously undescribed mechanisms that lead to large genomic deletions flanking Ds elements, which may contribute to genome dynamics and evolution.
Collapse
Affiliation(s)
- Damian R Page
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Muskett PR, Clissold L, Marocco A, Springer PS, Martienssen R, Dean C. A resource of mapped dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome. PLANT PHYSIOLOGY 2003; 132:506-16. [PMID: 12805583 PMCID: PMC166993 DOI: 10.1104/pp.102.016535] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 12/21/2002] [Accepted: 01/26/2003] [Indexed: 05/21/2023]
Abstract
We describe a new resource for targeted insertional mutagenesis in Arabidopsis using a maize (Zea mays) Activator/Dissociation (Ds) two-element system. The two components of the system, T-DNA vectors carrying a Ds launch pad and a stable Activator transposase source, were designed to simplify selection of transposition events and maximize their usefulness. Because Ds elements preferentially transpose to nearby genomic sites, they can be used in targeted mutagenesis of linked genes. To efficiently target all genes throughout the genome, we generated a large population of transgenic Arabidopsis plants containing the Ds launch pad construct, identified lines containing single Ds launch pad inserts, and mapped the positions of Ds launch pads in 89 lines. The integration sites of the Ds launch pads were relatively evenly distributed on all five chromosomes, except for a region of chromosomes 2 and 4 and the centromeric regions. This resource therefore provides access to the majority of the Arabidopsis genome for targeted tagging.
Collapse
Affiliation(s)
- Paul R Muskett
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
8
|
Morita R, Hattori Y, Yokoi S, Takase H, Minami M, Hiratsuka K, Toriyama K. Assessment of utility of meiosis-associated promoters of lily for induction of germinal ds transposition in transgenic rice. PLANT & CELL PHYSIOLOGY 2003; 44:637-642. [PMID: 12826629 DOI: 10.1093/pcp/pcg074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to suppress the somatic excision of the Ds element and increase the independent transposition events of the Ac/Ds transposon tagging system in rice, we employed promoters of two meiosis-specific genes of lily, LIM10 and LIM18. The LIM10 promoter directed GUS expression specifically in anthers, with the LIM18 promoter doing the same in the anthers and somatic tissue. Both promoters induced independent germinal transposition with the frequency of approximately 1%. The LIM10 promoter, lacking induction of somatic transposition, is considered to be useful for improving transposon-tagging efficiencies in rice.
Collapse
Affiliation(s)
- Ryouhei Morita
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:253-263. [PMID: 11069699 DOI: 10.1046/j.1365-313x.2000.00865.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To devise a method for function-based gene isolation and characterization in barley, we created a plasmid containing the maize Activator (Ac) transposase (AcTPase) gene and a negative selection gene, codA, and a plasmid containing Dissociation (Ds) inverted-repeat ends surrounding the selectable herbicide resistance gene, bar. These plasmids were used to stably transform barley (Hordeum vulgare). In vitro assays, utilizing a Ds-interrupted uidA reporter gene, were used to demonstrate high-frequency excisions of Ds when the uidA construct was introduced transiently into stably transformed, AcTPase-expressing plant tissue. Crosses were made between stably transformed plants expressing functional transposase under the transcriptional control of either the putative AcTPase promoter or the promoter and first intron from the maize ubiquitin (Ubi1) gene, and plants containing Ds-Ubi-bar. In F(1) plants from these crosses, low somatic and germinal transposition frequencies were observed; however, in F(2) progeny derived from individual selfed F(1) plants, up to 47% of the plants showed evidence of Ds transposition. Further analyses of F(3) plants showed that approximately 75% of the transposed Ds elements reinserted into linked locations and 25% into unlinked locations. Transposed Ds elements in plants lacking the AcTPase transposase gene could be reactivated by reintroducing the transposase gene through classical genetic crossing, making this system functional for targeted gene tagging and studies of gene function. During the analysis of F(3) plants we observed two mutant phenotypes in which the transposed Ds elements co-segregate with the new phenotype, suggesting the additional utility of such a system for tagging genes.
Collapse
Affiliation(s)
- T Koprek
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
10
|
Martienssen RA. Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 1998; 95:2021-6. [PMID: 9482828 PMCID: PMC33836 DOI: 10.1073/pnas.95.5.2021] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposable elements provide a convenient and flexible means to disrupt plant genes, so allowing their function to be assessed. By engineering transposons to carry reporter genes and regulatory signals, the expression of target genes can be monitored and to some extent manipulated. Two strategies for using transposons to assess gene function are outlined here: First, the PCR can be used to identify plants that carry insertions into specific genes from among pools of heavily mutagenized individuals (site-selected transposon mutagenesis). This method requires that high copy transposons be used and that a relatively large number of reactions be performed to identify insertions into genes of interest. Second, a large library of plants, each carrying a unique insertion, can be generated. Each insertion site then can be amplified and sequenced systematically. These two methods have been demonstrated in maize, Arabidopsis, and other plant species, and the relative merits of each are discussed in the context of plant genome research.
Collapse
Affiliation(s)
- R A Martienssen
- Cold Spring Harbor Laboratory, Box 100, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
11
|
Cocherel S, Perez P, Degroote F, Genestier S, Picard G. A promoter identified in the 3' end of the Ac transposon can be activated by cis-acting elements in transgenic Arabidopsis lines. PLANT MOLECULAR BIOLOGY 1996; 30:539-551. [PMID: 8605304 DOI: 10.1007/bf00049330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In experiments directed to develop a promoter trap strategy in Arabidopsis, using a Ds chimaeric element containing a promoterless beta-glucuronidase (GUS) gene, we identified a promoter in the 3' end region of the Ac transposable element. The promoter initiates most of the transcripts at coordinate 4250 in the Ac sequence and is oriented towards the internal part of the element. When fused to a promoterless GUS gene, the promoter allows transient expression in Arabidopsis leaves. After stable integration into the Arabidpsis genome, no GUS activity was observed in most of the transformed lines analysed. Only two of them exhibited different tissue-specific GUS expression. When a CaMV 35S promoter was introduced into the transformation vector, downstream to the reporter gene, a high level of GUS activity was observed in all the transformants. These results strongly suggest that the promoter is not normally expressed at a significant level in Arabidopsis transformed lines except when activated by neighbouring cis-acting enhancer elements. This opens an interesting possibility for using this promoter to develop 'enhancer trap' strategies in Arabidopsis. Since only one Ac transcript, initiating in the 5' end region of the element has been reported to date in maize, the putative biological function of the promoter remains an open question.
Collapse
Affiliation(s)
- S Cocherel
- URA 1940 Biomove CNRS, Université Blasie Pascal, 63177 Aubière Cedex France
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- R Kunze
- Institut für Genetik, Universitat zu Köln, Germany
| |
Collapse
|
13
|
Altmann T, Felix G, Jessop A, Kauschmann A, Uwer U, Peña-Cortés H, Willmitzer L. Ac/Ds transposon mutagenesis in Arabidopsis thaliana: mutant spectrum and frequency of Ds insertion mutants. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:646-52. [PMID: 7603445 DOI: 10.1007/bf00290357] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt) Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.
Collapse
Affiliation(s)
- T Altmann
- Institut für Genbiologische Forschung Berlin GmbH, Berlin, FRG
| | | | | | | | | | | | | |
Collapse
|
14
|
Balcells L, Coupland G. The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. PLANT MOLECULAR BIOLOGY 1994; 24:789-798. [PMID: 8193303 DOI: 10.1007/bf00029860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two copies of domain B of the CaMV 35S promoter were inserted ca. 300 bp upstream of the transcriptional start site of the Ac transposase gene. Four independent Arabidopsis transformants containing this fusion (35SenhAc::TPase) were made and the abundance of transposase mRNA in each of them was determined. The presence of the enhancers increased the abundance of the transposase mRNA by about 12-fold compared to that found in plants containing an Ac promoter fusion to the transposase gene (Ac::TPase). Hybrid plants carrying 35SenhAc::TPase and a Ds element inserted in a streptomycin phosphotransferase (SPT) gene were constructed and the frequency with which Ds excision occurred in the developing cotyledons was measured. Moreover, the number of progeny of these hybrid plants which inherited an SPT gene activated by Ds excision was studied in individual F2 families. Those derived from 35SenhAc::TPase often contained higher proportions of streptomycin-resistant (strepR) F2 progeny than those derived from Ac::TPase. These high frequencies of strepR seedlings were comparable to those previously detected after activation of Ds by a CaMV 35S promoter fusion to transposase (35S::TPase), but occurred in fewer families. The higher frequency with which this occurred in families derived from 35SenhAc::TPase compared to Ac::TPase suggests that the presence of enhancers adjacent to the native Ac promoter can influence transposase gene expression, and in this case often results in earlier excision of Ds during plant development.
Collapse
Affiliation(s)
- L Balcells
- Cambridge Laboratory, John Innes Centre for Plant Science Research, Norwich
| | | |
Collapse
|