1
|
Edera AA, Howell KA, Nevill PG, Small I, Sanchez-Puerta MV. Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron. Gene 2023; 869:147393. [PMID: 36966978 DOI: 10.1016/j.gene.2023.147393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of their introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, frequently in domain IV of introns. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
Collapse
Affiliation(s)
- Alejandro A Edera
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina.
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia; Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
2
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
3
|
Ronfort J, Saumitou-Laprade P, Cuguen J, Couvet D. Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp carota. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:150-159. [PMID: 24169681 DOI: 10.1007/bf00220872] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/1994] [Accepted: 12/15/1994] [Indexed: 06/02/2023]
Abstract
Mitochondrial variability was investigated in natural populations of wild carrot (Daucus carota ssp carota) in different regions: South of France, Greece, and various sites in the Mediterranean Basin and Asia. Total DNA was digested with two restriction endonucleases (EcoRV and HindIII) and probed with three mitochondrial DMA-specific genes (coxI, atp6, and coxII). Twenty-five different mitochondrial types were found in 80 analyzed individuals. Thirteen mitotypes were found among the 7 French populations studied. On average, 4.4 different mitotypes were observed per population, and these mitotypes were well-distributed among the populations. All of the mitochondrial types were specific to a single region. However, the proportion of shared restriction fragments between 2 mitotypes from different regions was not particularly lower than that which occurred among mitotypes from a single region. On the basis of the sexual phenotype [male-sterile (MS) or hermaphrodite] of the plants studied in situ and that of their progeny, 2 mitotypes were found to be highly associated with male sterility. Eighty percent of the plants bearing these mitotypes were MS in situ, and all of these plants produced more than 30% MS plants in their progeny. This association with male sterility was consistent in several populations, suggesting an association with a cytoplasmic male-sterility system. Moreover, these two mitotypes had very similar mitochondrial DNA restriction patterns and were well-differentiated from the other mitotypes observed in wild plants and also from those observed in the two CMS types already known in the cultivated carrot. This suggests that they correspond to a third cytoplasmic sterility.
Collapse
Affiliation(s)
- J Ronfort
- Département de biologie des populations, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919, Route de Mende, Montpellier Cedex, France
| | | | | | | |
Collapse
|
4
|
Wolff G, Burger G, Lang BF, Kück U. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Res 1993; 21:719-26. [PMID: 7680126 PMCID: PMC309174 DOI: 10.1093/nar/21.3.719] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles.
Collapse
Affiliation(s)
- G Wolff
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
5
|
Scheike R, Gerold E, Brennicke A, Mehring-Lemper M, Wricke G. Unique patterns of mitochondrial genes, transcripts and proteins in different male-sterile cytoplasms of Daucus carota. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 83:419-427. [PMID: 24202587 DOI: 10.1007/bf00226529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1991] [Accepted: 07/09/1991] [Indexed: 06/02/2023]
Abstract
Restriction fragment analysis of mitochondrial and chloroplast DNAs from a brown anther and a petaloid cytoplasmic male-sterile (cms) line revealed unique patterns for each cms line distinct from those of normal fertile cytoplasms, but identical restriction fragments for all chloroplast DNAs. The restauration of fertility through the introduction of nuclear restorer genes had no effect on the overall mitochondrial DNA (mtDNA) structure. The genomic environment and transcription patterns of several mitochondrial genes differ between cms and normal cytoplasms, while no difference has so far been detected between cms and the corresponding fertility-restored lines in mitochondrial DNAs and mRNAs. Mitochondrial translation products analysed by in-organello synthesized proteins revealed a number of polypeptides unique to each cytoplasm. Most prominent is a 17-kDa polypeptide that is present in the brown anther cms line but not in fertile mitochondria. Synthesis of this protein was not visibly affected by fertility restauration. The different cms phenotypes in carrot are thus associated with extensive and unique mtDNA rearrangements and distinct alterations in transcription and translation patterns.
Collapse
Affiliation(s)
- R Scheike
- Institut für Genbiologische Forschung, Ihnestrasse 63, W-1000, Berlin 33, FRG
| | | | | | | | | |
Collapse
|