1
|
Abstract
Conventional methods of DNA sequence insertion into plants, using Agrobacterium-mediated transformation or microprojectile bombardment, result in the integration of the DNA at random sites in the genome. These plants may exhibit altered agronomic traits as a consequence of disruption or silencing of genes that serve a critical function. Also, genes of interest inserted at random sites are often not expressed at the desired level. For these reasons, targeted DNA insertion at suitable genomic sites in plants is a desirable alternative. In this paper we review approaches of targeted DNA insertion in plant genomes, discuss current technical challenges, and describe promising applications of targeted DNA insertion for crop genetic improvement.
Collapse
|
2
|
Nishizawa-Yokoi A, Mikami M, Toki S. A Universal System of CRISPR/Cas9-Mediated Gene Targeting Using All-in-One Vector in Plants. Front Genome Ed 2020; 2:604289. [PMID: 34713227 PMCID: PMC8525384 DOI: 10.3389/fgeed.2020.604289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Homologous recombination-mediated genome editing, also called gene targeting (GT), is an essential technique that allows precise modification of a target sequence, including introduction of point mutations, knock-in of a reporter gene, and/or swapping of a functional domain. However, due to its low frequency, it has been difficult to establish GT approaches that can be applied widely to a large number of plant species. We have developed a simple and universal clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated DNA double-strand break (DSB)-induced GT system using an all-in-one vector comprising a CRISPR/Cas9 expression construct, selectable marker, and GT donor template. This system enabled introduction of targeted point mutations with non-selectable traits into several target genes in both rice and tobacco. Since it was possible to evaluate the GT frequency on endogenous target genes precisely using this system, we investigated the effect of treatment with Rad51-stimulatory compound 1 (RS-1) on the frequency of DSB-induced GT. GT frequency was slightly, but consistently, improved by RS-1 treatment in both target plants.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Masafumi Mikami
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Seiichi Toki
| |
Collapse
|
3
|
Sun Y, Li J, Xia L. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1928. [PMID: 28066481 PMCID: PMC5167731 DOI: 10.3389/fpls.2016.01928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 05/17/2023]
Abstract
Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes' encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired "safe" harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in plant cells. We then address the challenges and propose future perspectives in order to facilitate the implementation of precise genome modification through SSNs-mediated GT for crop improvement in a global context.
Collapse
|
4
|
de Pater S, Pinas JE, Hooykaas PJJ, van der Zaal BJ. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:510-5. [PMID: 23279135 PMCID: PMC3719044 DOI: 10.1111/pbi.12040] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 05/20/2023]
Abstract
Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10⁻³ per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10⁻³ per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so-called true GT events, repaired via homologous recombination (HR) at the 5' and the 3' end of the gene. One plant line contained a PPO gene repaired only at the 5' end via HR. Most plant lines contained extra randomly integrated T-DNA copies. Two plant lines did not contain extra T-DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.
Collapse
Affiliation(s)
- Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
5
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/989272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.
Collapse
|
7
|
de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJJ, van der Zaal BJ. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:821-35. [PMID: 19754840 DOI: 10.1111/j.1467-7652.2009.00446.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zinc-finger nucleases (ZFNs) are artificial restriction enzymes, custom designed for induction of double-strand breaks (DSBs) at a specific locus. These DSBs may result in site-specific mutagenesis or homologous recombination at the repair site, depending on the DNA repair pathway that is used. These promising techniques for genome engineering were evaluated in Arabidopsis plants using Agrobacterium-mediated floral dip transformation. A T-DNA containing the target site for a ZFN pair, that was shown to be active in yeast, was integrated in the Arabidopsis genome. Subsequently, the corresponding pair of ZFN genes was stably integrated in the Arabidopsis genome and ZFN activity was determined by PCR and sequence analysis of the target site. Footprints were obtained in up to 2% of the PCR products, consisting of deletions ranging between 1 and 200 bp and insertions ranging between 1 and 14 bp. We did not observe any toxicity from expression of the ZFNs. In order to obtain ZFN-induced gene-targeting (GT), Arabidopsis plants containing the target site and expressing the ZFN pair were transformed with a T-DNA GT construct. Three GT plants were obtained from approximately 3000 transformants. Two of these represent heritable true GT events, as determined by PCR, Southern blot analysis and sequencing of the resulting recombined locus. The third plant showed an ectopic GT event. No GT plants were obtained in a comparable number of transformants that did not contain the ZFNs. Our results demonstrate that ZFNs enhance site-specific mutagenesis and gene-targeting of Agrobacterium T-DNA constructs delivered through floral dip transformation.
Collapse
Affiliation(s)
- Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Pacher M, Schmidt-Puchta W, Puchta H. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 2007; 175:21-9. [PMID: 17057227 PMCID: PMC1775016 DOI: 10.1534/genetics.106.065185] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/06/2006] [Indexed: 11/18/2022] Open
Abstract
Using the rare-cutting endonuclease I-SceI we were able to demonstrate before that the repair of a single double-strand break (DSB) in a plant genome can be mutagenic due to insertions and deletions. However, during replication or due to irradiation several breaks might be induced simultaneously. To analyze the mutagenic potential of such a situation we established an experimental system in tobacco harboring two unlinked transgenes, each carrying an I-SceI site. After transient expression of I-SceI a kanamycin-resistance marker could be restored by joining two previously unlinked broken ends, either by homologous recombination (HR) or by nonhomologous end joining (NHEJ). Indeed, we were able to recover HR and NHEJ events with similar frequencies. Despite the fact that no selection was applied for joining the two other ends, the respective linkage could be detected in most cases tested, demonstrating that the respective exchanges were reciprocal. The frequencies obtained indicate that DSB-induced translocation is up to two orders of magnitude more frequent in somatic cells than ectopic gene conversion. Thus, DSB-induced reciprocal exchanges might play a significant role in plant genome evolution. The technique applied in this study may also be useful for the controlled exchange of unlinked sequences in plant genomes.
Collapse
Affiliation(s)
- Michael Pacher
- Botany II, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|
9
|
Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:693-705. [PMID: 16262717 DOI: 10.1111/j.1365-313x.2005.02551.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Homologous recombination offers great promise for plant genome engineering. This promise has not been realized, however, because when DNA enters plant cells homologous recombination occurs infrequently and random integration predominates. Using a tobacco test system, we demonstrate that chromosome breaks created by zinc-finger nucleases greatly enhance the frequency of localized recombination. Homologous recombination was measured by restoring function to a defective GUS:NPTII reporter gene integrated at various chromosomal sites in 10 different transgenic tobacco lines. The reporter gene carried a recognition site for a zinc-finger nuclease, and protoplasts from each tobacco line were electroporated with both DNA encoding the nuclease and donor DNA to effect repair of the reporter. Homologous recombination occurred in more than 10% of the transformed protoplasts regardless of the reporter's chromosomal position. Approximately 20% of the GUS:NPTII reporter genes were repaired solely by homologous recombination, whereas the remainder had associated DNA insertions or deletions consistent with repair by both homologous recombination and non-homologous end joining. The DNA-binding domain encoded by zinc-finger nucleases can be engineered to recognize a variety of chromosomal target sequences. This flexibility, coupled with the enhancement in homologous recombination conferred by double-strand breaks, suggests that plant genome engineering through homologous recombination can now be reliably accomplished using zinc-finger nucleases.
Collapse
Affiliation(s)
- David A Wright
- Phytodyne, Inc., 2711 South Loop Drive, Building 4, Suite 4400, Ames, IA 50010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Reiss B. Homologous recombination and gene targeting in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:85-139. [PMID: 14667043 DOI: 10.1016/s0074-7696(03)28003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene targeting has become an indispensable tool for functional genomics in yeast and mouse; however, this tool is still missing in plants. This review discusses the gene targeting problem in plants in the context of general knowledge on recombination and gene targeting. An overview on the history of gene targeting is followed by a general introduction to genetic recombination of bacteria, yeast, and vertebrates. This abridged discussion serves as a guide to the following sections, which cover plant-specific aspects of recombination assay systems, the mechanism of recombination, plant recombination genes, the relationship of recombination to the environment, approaches to stimulate homologous recombination and gene targeting, and a description of two plant systems, the moss Physcomitrella patens and the chloroplast, that naturally have high efficiencies of gene targeting. The review concludes with a discussion of alternatives to gene targeting.
Collapse
Affiliation(s)
- Bernd Reiss
- Max-Planck-Institut für Zuechtungsforschung, Carl-von-Linne-Weg 10, D-50829 Köln, Germany
| |
Collapse
|
11
|
Jelesko JG, Harper R, Furuya M, Gruissem W. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1999; 96:10302-7. [PMID: 10468603 PMCID: PMC17883 DOI: 10.1073/pnas.96.18.10302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small, multigene families organized in a tandem array can facilitate the rapid evolution of the gene cluster by a process of meiotic unequal crossing-over. To study this process in a multicellular organism, we created a synthetic RBCSB gene cluster in Arabidopsis thaliana and used this to measure directly the frequency of meiotic, intergenic unequal crossing-over between sister chromatids. The synthetic RBCSB gene cluster was composed of a silent DeltaRBCS1B::LUC chimeric gene fusion, lacking all 5' transcription and translation signals, followed by RBCS2B and RBC3B genomic DNA. Expression of luciferase activity (luc(+)) required a homologous recombination event between the DeltaRBCS1B::LUC and the RBCS3B genes, yielding a novel recombinant RBCS3B/ 1B::LUC chimeric gene whose expression was driven by RBCS3B 5' transcription and translation signals. Using sensitive, single-photon-imaging equipment, three luc(+) seedlings were identified in more than 1 million F2 seedlings derived from self-fertilized F1 plants hemizygous for the synthetic RBCSB gene cluster. The F2 luc(+) seedlings were isolated, and molecular and genetic analysis indicated that the luc(+) trait was caused by the formation of a recombinant chimeric RBCS3B/1B::LUC gene. A predicted duplication of the RBCS2B gene also was present. The recombination resolution break points mapped adjacent to a region of intron I at which a disjunction in sequence similarity between RBCS1B and RBCS3B occurs; this provided evidence supporting models of gene cluster evolution by exon-shuffling processes. In contrast to most measures of meiotic unequal crossing-over that require the deletion of a gene in a gene cluster, these results directly measured the frequency of meiotic unequal crossing-over (approximately 3 x 10(-6)), leading to the expansion of the gene cluster and the formation of a novel recombinant gene.
Collapse
Affiliation(s)
- J G Jelesko
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
12
|
Puchta H. Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 1999; 152:1173-81. [PMID: 10388832 PMCID: PMC1460648 DOI: 10.1093/genetics/152.3.1173] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homologous recombination between ectopic sites is rare in higher eukaryotes. To test whether double-strand breaks (DSBs) can induce ectopic recombination, transgenic tobacco plants harboring two unlinked, nonfunctional homologous parts of a kanamycin resistance gene were produced. To induce homologous recombination between the recipient locus (containing an I-SceI site within homologous sequences) and the donor locus, the rare cutting restriction enzyme I-SceI was transiently expressed via Agrobacterium in these plants. Whereas without I-SceI expression no recombination events were detectable, four independent recombinants could be isolated after transient I-SceI expression, corresponding to approximately one event in 10(5) transformations. After regeneration, the F1 generation of all recombinants showed Mendelian segregation of kanamycin resistance. Molecular analysis of the recombinants revealed that the resistance gene was indeed restored via homologous recombination. Three different kinds of reaction products could be identified. In one recombinant a classical gene conversion without exchange of flanking markers occurred. In the three other cases homologous sequences were transferred only to one end of the break. Whereas in three cases the ectopic donor sequence remained unchanged, in one case rearrangements were found in recipient and donor loci. Thus, ectopic homologous recombination, which seems to be a minor repair pathway for DSBs in plants, is described best by recombination models that postulate independent roles for the break ends during the repair process.
Collapse
Affiliation(s)
- H Puchta
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), D-06466 Gatersleben, Germany.
| |
Collapse
|
13
|
Masson JE, Paszkowski J. Arabidopsis thaliana mutants altered in homologous recombination. Proc Natl Acad Sci U S A 1997; 94:11731-5. [PMID: 9326679 PMCID: PMC23619 DOI: 10.1073/pnas.94.21.11731] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homologous recombination contributes both to the generation of allelic diversity and to the preservation of genetic information. In plants, a lack of suitable experimental material has prevented studies of the regulatory and enzymatic aspects of recombination in somatic and meiotic cells. We have isolated nine Arabidopsis thaliana mutants hypersensitive to x-ray irradiation (xrs) and examined their recombination properties. For the three xrs loci described here, single recessive mutations were found to confer simultaneous hypersensitivities to the DNA-damaging chemicals mitomycin C (MMCs) and/or methyl methanesulfonate (MMSs) and alterations in homologous recombination. Mutant xrs9 (Xrays, MMSs) is reduced in both somatic and meiotic recombination and resembles yeast mutants of the rad52 epistatic group. xrs11 (Xrays, MMCs) is deficient in the x-ray-mediated stimulation of homologous recombination in somatic cells in a manner suggesting a specific signaling defect. xrs4 (Xrays, MMSs, MMCs) has a significant deficiency in somatic recombination, but this is accompanied by meiotic hyper-recombination. A corresponding phenotype has not been reported in other systems and thus this indicates a novel, plant-specific regulatory circuit linking mitotic and meiotic recombination.
Collapse
Affiliation(s)
- J E Masson
- Friedrich Miescher Institute, P. O. Box 2543, 4002 Basel, Switzerland.
| | | |
Collapse
|
14
|
Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 1996; 93:5055-60. [PMID: 8643528 PMCID: PMC39405 DOI: 10.1073/pnas.93.10.5055] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genomic double-strand breaks (DSBs) are key intermediates in recombination reactions of living organisms. We studied the repair of genomic DSBs by homologous sequences in plants. Tobacco plants containing a site for the highly specific restriction enzyme I-Sce I were cotransformed with Agrobacterium strains carrying sequences homologous to the transgene locus and, separately, containing the gene coding for the enzyme. We show that the induction of a DSB can increase the frequency of homologous recombination at a specific locus by up to two orders of magnitude. Analysis of the recombination products demonstrates that a DSB can be repaired via homologous recombination by at least two different but related pathways. In the major pathway, homologies on both sides of the DSB are used, analogous to the conservative DSB repair model originally proposed for meiotic recombination in yeast. Homologous recombination of the minor pathway is restricted to one side of the DSB as described by the nonconservative one-sided invasion model. The sequence of the recombination partners was absolutely conserved in two cases, whereas in a third case, a deletion of 14 bp had occurred, probably due to DNA polymerase slippage during the copy process. The induction of DSB breaks to enhance homologous recombination can be applied for a variety of approaches of plant genome manipulation.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA Damage
- DNA Repair/genetics
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Gene Targeting
- Genome, Plant
- Models, Genetic
- Molecular Sequence Data
- Plants/genetics
- Plants/metabolism
- Plants/microbiology
- Plants, Genetically Modified
- Plants, Toxic
- Polymerase Chain Reaction
- Recombination, Genetic
- Rhizobium/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Deletion
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/microbiology
- Transformation, Genetic
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|