1
|
Meinhardt A, Sutovsky P. A century of andrology in Cell & Tissue Research: looking back while moving forward. Cell Tissue Res 2025; 400:111-119. [PMID: 39292239 DOI: 10.1007/s00441-024-03916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
This article commemorates the 100th anniversary of the first issue of Cell & Tissue Research (CTR), the longest-running active journal dedicated to cell biology. Reflecting the significant contributions of spermatology and embryology to the early days of cell biology, the majority of articles in CTR's inaugural issue centered on plant and animal sperm cells. A brief synopsis of these articles provides a launching point for revisiting 100 years of research on the male germ cells and fertility in humans and animals and offers a perspective on the current state and future directions of the andrology field. Early technological advances in light and electron microscopy enabled descriptive studies that ushered in the era of mechanistic, biochemistry-based inquiry focused on the understanding of physiological sperm processes such as sperm capacitation, acrosomal exocytosis, and sperm-egg interactions. In the last 20 years, progress in flow cytometry, cell imaging, and omics revealed new information on sperm proteome, transcriptome, metabolome, and overall phenome of fertile and infertile spermatozoa. Going back to the journal's roots, recent advances in male germ cell isolation, transplantation, modification, and cryopreservation have been discussed on the pages of CTR. Newest trends such as gene editing and artificial intelligence/machine learning are now making inroads into andrological inquiry and assisted reproductive therapy of male infertility.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Sutovsky
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, 920 East Campus Drive, Columbia, MO, S141 ASRC65211-5300, USA.
| |
Collapse
|
2
|
Sečová P, Hackerová L, Horovská Ľ, Michalková K, Jankovičová J, Postlerová P, Antalíková J. Complexity and modification of the bull sperm glycocalyx during epididymal maturation. FASEB J 2024; 38:e23687. [PMID: 38785390 DOI: 10.1096/fj.202400551rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.
Collapse
Affiliation(s)
- Petra Sečová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lenka Hackerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ľubica Horovská
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarína Michalková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Jankovičová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavla Postlerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Gewaily MS, Abdallah MG, Khalifa NE, Habotta OA, Noreldin AE. Differential cellular localization of lectins in the testes of dromedary camel (Camelus dromedarius) during active and inactive breeding seasons. BMC Vet Res 2023; 19:230. [PMID: 37925435 PMCID: PMC10625267 DOI: 10.1186/s12917-023-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The reproductive activity of the male dromedary camel (Camelus dromedarius) as a seasonal breeder is affected by various seasonal changes that reflect on the reproductive performance. In the current study, we explored a differential cellular localization of lectins in eight dromedary camel testes utilizing lectin histochemistry (LHC). The glycoconjugates' localizations were detected within the testicular tissue utilizing 13 biotin-labeled lectins (PNA, ConA, LCA, RCA120, GS IB4, WGA, BPL, DBA, ECA, PHA-E4, UEA-1, PTL-II, and SBA) distributed into six sets. The cellular structures revealed diverse lectins distribution that may reflect various glycoproteins' structures and their compositional modifications during spermatogenesis. Some of the investigated lectins were restricted to acrosomes of spermatids that will help study different stages during the spermatogenic cycle of dromedary camel, particularly PNA, and ECA. The statistical analysis showed a marked positive correlation between the response intensity of various lectins and the breeding season (P < 0.05). We can conclude that lectins have a fundamental role during camel spermatogenesis and are associated with the reproductive activity of dromedary camel.
Collapse
Affiliation(s)
- Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Mohamed Gaber Abdallah
- Department of Medical Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
4
|
Gewaily MS, Kassab M, Aboelnour A, Almadaly EA, Noreldin AE. Comparative Cellular Localization of Sugar Residues in Bull ( Bos taurus) and Donkey ( Equus asinus) Testes Using Lectin Histochemistry. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-10. [PMID: 34635197 DOI: 10.1017/s1431927621012939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lectins are glycoproteins of a non-immune origin often used as histochemical reagents to study the distribution of glycoconjugates in different types of tissues. In this study, we performed a comparative cellular localization of sugar residues in bull and donkey testes using immunofluorescent lectin histochemistry. We inspected the cellular localization of the glycoconjugates within the testes using 11 biotin-labeled lectins (LCA, ConA, PNA, WGA, DBA, SBA, ECA, BPL, PTL-II, UEA-1, and PHA-E4) classified under six groups. Although the basic testicular structure in both species was similar, the cellular components showed different lectin localization patterns. The statistical analysis revealed no significant association between the intensity of labeling and different variables, including group and type of lectin and type of cell examined, at p < 0.05. However, a stronger response tended to occur in the donkey than in the bull testes (odds ratio: 1.3). These findings may be associated with the different cellular compositions of the glycoproteins and modification changes during spermatogenesis. Moreover, glycoconjugate profiling through lectin histochemistry can characterize some cell-type selective markers that will be helpful in studying bull and donkey spermatogenesis.
Collapse
Affiliation(s)
- Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516Kafrelsheikh, Egypt
| | - Mohamed Kassab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516Kafrelsheikh, Egypt
| | - Asmaa Aboelnour
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour22511, Egypt
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, 33516, Kafrelsheikh, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour22511, Egypt
| |
Collapse
|
5
|
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017; 5:204-218. [PMID: 28297559 DOI: 10.1111/andr.12320] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
After leaving the testis, spermatozoa have not yet acquired the ability to move progressively and are unable to fertilize oocytes. To become fertilization competent, they must go through an epididymal maturation process in the male, and capacitation in the female tract. Epididymal maturation can be defined as those changes occurring to spermatozoa in the epididymis that render the spermatozoa the ability to capacitate in the female tract. As part of this process, sperm cells undergo a series of biochemical and physiological changes that require incorporation of new molecules derived from the epididymal epithelium, as well as post-translational modifications of endogenous proteins synthesized during spermiogenesis in the testis. This review will focus on epididymal maturation events, with emphasis in recent advances in the understanding of the molecular basis of this process.
Collapse
Affiliation(s)
- M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
6
|
Belmonte SA, Romano PS, Sosa MA. Mannose-6-phosphate receptors as a molecular indicator of maturation of epididymal sperm. ARCHIVES OF ANDROLOGY 2002; 48:53-63. [PMID: 11789684 DOI: 10.1080/014850102753385215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This review discusses some of the changes in sperm during maturation within the context of current concepts of membrane structure and fertilization. Mammalian sperm are surrounded by a limiting plasma membrane that undergoes remodeling during passage through the epididymis. This process confers on the gamete vigorous motility and the ability to fertilize the egg. The repositioning of some surface proteins may follow redistribution of lipids in the plasmalemma, and thus represent a critical step in the maturation of the gametes. Among the various affected proteins of the sperm plasmalemma, mannose-6-phosphate receptors undergo redistribution as the gametes transit through the epididymal duct. The authors summarize their studies of the redistribution of phosphomannosyl receptors during maturation of sperm and discuss possible roles of these glycoproteins in the fertilizing capability of sperm.
Collapse
Affiliation(s)
- S A Belmonte
- Instituto de Histologia y Embriologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | |
Collapse
|
7
|
Muwazi R, Kayanja FIB. The epididymal epithelium of the African giant rat ( Cricetomys gambianus, Waterhouse, 1840). Afr J Ecol 2001. [DOI: 10.1046/j.1365-2028.1999.00138.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ruth Muwazi
- Department of Veterinary Anatomy, Makerere University, P.O. Box 7062, Kampala
| | - F. I. B. Kayanja
- Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
8
|
Cesario M, Bartles J. Compartmentalization, processing and redistribution of the plasma membrane protein CE9 on rodent spermatozoa. Relationship of the annulus to domain boundaries in the plasma membrane of the tail. J Cell Sci 1994. [DOI: 10.1242/jcs.107.2.561] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Western blotting, immunofluorescence and immunogold electron microscopy were used to examine the compartmentalization, processing and redistribution of the integral plasma membrane protein CE9 on the spermatozoa of rats, mice and hamsters. In each species examined, spermatozoal CE9 was found to undergo endoproteolytic processing followed by a net redistribution from the posterior-tail domain into the anterior-tail domain of the plasma membrane during epididymal maturation. Compared to spermatozoa of the rat and mouse, those of the hamster were found to express a greater proportion of their CE9 within the anterior-tail plasma membrane domain at all stages of maturation. As a consequence, CE9 was judged to be a suitable marker for two different spermatozoal plasma membrane domains: the posterior-tail plasma membrane domain (spermatozoa from the testis and caput epididymidis of the rat and mouse) and the anterior-tail domain (spermatozoa from the cauda epididymidis of the hamster). Immunogold electron microscopy was used to pinpoint the positions of the boundaries of these CE9-containing plasma membrane domains at a high level of resolution. In each case, the position of the CE9 domain boundary was found to be strongly correlated with that of the subplasmalemmal electron-dense ring known as the annulus. The precise spatial relationship between the CE9 domain boundary and the annulus was, however, found to differ significantly among species and/or as a function of maturation.
Collapse
Affiliation(s)
- M.M. Cesario
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| | - J.R. Bartles
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| |
Collapse
|