1
|
Huberman LB, Wu VW, Kowbel DJ, Lee J, Daum C, Grigoriev IV, O'Malley RC, Glass NL. DNA affinity purification sequencing and transcriptional profiling reveal new aspects of nitrogen regulation in a filamentous fungus. Proc Natl Acad Sci U S A 2021; 118:e2009501118. [PMID: 33753477 PMCID: PMC8020665 DOI: 10.1073/pnas.2009501118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in N. crassa is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins. We identified an uncharacterized pathway-specific transcription factor, amn-1, that is required for utilization of the nonpreferred nitrogen sources proline, branched-chain amino acids, and aromatic amino acids. AMN-1 also plays a role in regulating genes involved in responding to the simple sugar mannose, suggesting an integration of nitrogen and carbon metabolism. The utilization of nonpreferred nitrogen sources, which require metabolic processing before being used as a nitrogen source, is also regulated by the nitrogen catabolite regulator NIT-2. Using RNA sequencing combined with DNA affinity purification sequencing, we performed a survey of the role of NIT-2 and the pathway-specific transcription factors NIT-4 and AMN-1 in directly regulating genes involved in nitrogen utilization. Although previous studies suggested promoter binding by both a pathway-specific transcription factor and NIT-2 may be necessary for activation of nitrogen-responsive genes, our data show that pathway-specific transcription factors regulate genes involved in the catabolism of specific nitrogen sources, while NIT-2 regulates genes involved in utilization of all nonpreferred nitrogen sources, such as nitrogen transporters. Together, these transcription factors form a nutrient sensing network that allows N. crassa cells to regulate nitrogen utilization.
Collapse
Affiliation(s)
- Lori B Huberman
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - Vincent W Wu
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - David J Kowbel
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
2
|
Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol 2013; 61:69-79. [PMID: 24161729 DOI: 10.1016/j.fgb.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/26/2023]
Abstract
AcareA, encoding a homologue of the fungal nitrogen regulatory GATA zinc-finger proteins, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation revealed that AcareA was required for nitrogen metabolism and cephalosporin production. Disruption of AcareA resulted in growth defect in the medium using nitrate, uric acid and low concentration of ammonium, glutamine or urea as sole nitrogen source. Transcriptional analysis showed that the transcription of niaD/niiA was increased drastically when induced with nitrate in the wild-type and AcareA complemented strains but not in AcareA disruption mutant. Consistent with the reduction of cephalosporin production, the transcription of pcbAB, cefD2, cefEF and cefG encoding the enzymes for cephalosporin production was reduced in AcareA disruption mutant. Band shift assays showed that AcAREA bound to the promoter regions of niaD, niiA and the bidirectional promoter region of pcbAB-pcbC. Sequence analysis showed that all the AcAREA binding sites contain the consensus GATA elements. These results indicated that AcAREA plays an important role both in the regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum.
Collapse
|
3
|
Rolland SG, Bruel CA. Sulphur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. MICROBIOLOGY-SGM 2008; 154:1464-1473. [PMID: 18451055 DOI: 10.1099/mic.0.2007/012005-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sulphur and nitrogen catabolic repressions are regulations that have long been recognized in fungi, but whose molecular bases remain largely elusive. This paper shows that catabolic repression of a protease-encoding gene correlates with the modulation of a phosphatidylethanolamine (PE)-specific phospholipase D (PLD) activity in the pathogenic fungus Botrytis cinerea. Our results first demonstrate that the ACP1 gene is subject to sulphur catabolic repression, with sulphate and cysteine inhibiting its expression. Sulphate and cysteine also cause a decrease of the total cellular PLD activity and, reciprocally, the two PLD inhibitors AEBSF [4-(2-aminoethyl)benzenesulphonyl fluoride] and curcumin negatively affect ACP1 expression in vivo. Cysteine moreover inhibits the PE-specific PLD activity in cell extracts. ACP1 is regulated by nitrogen, but here we show that this regulation does not rely on the proximal AREA binding site in its promoter, and that glutamine does not play a particular role in the process. A decrease in the total cellular PLD activity is also observed when the cells are fed ammonia, but this effect is smaller than that produced by sulphur. RNA-interference experiments finally suggest that the enzyme responsible for the PE-specific PLD activity is encoded by a gene that does not belong to the known HKD gene family of PLDs.
Collapse
Affiliation(s)
- Stéphane G Rolland
- Génomique fonctionnelle des champignons pathogènes des plantes, UMR5240 Microbiologie, Adaptation et Pathogénie, Université Lyon 1, CNRS, Bayer CropScience, Université de Lyon, 14 Rue Pierre Baizet, 69263 Lyon Cedex 9, France
| | - Christophe A Bruel
- Génomique fonctionnelle des champignons pathogènes des plantes, UMR5240 Microbiologie, Adaptation et Pathogénie, Université Lyon 1, CNRS, Bayer CropScience, Université de Lyon, 14 Rue Pierre Baizet, 69263 Lyon Cedex 9, France
| |
Collapse
|
4
|
Oestreicher N, Ribard C, Scazzocchio C. The nadA gene of Aspergillus nidulans, encoding adenine deaminase, is subject to a unique regulatory pattern. Fungal Genet Biol 2007; 45:760-75. [PMID: 18055231 DOI: 10.1016/j.fgb.2007.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 11/24/2022]
Abstract
The adenine deaminase of A. nidulans, encoded by nadA, can be considered both as a catabolic and a purine salvage enzyme. We show that its transcriptional regulation reflects this double metabolic role. As all other genes involved in purine utilisation it is induced by uric acid, and this induction is mediated by the UaY transcription factor. However, it is also independently and synergistically induced by adenosine by a UaY-independent mechanism. At variance with all other enzymes of purine catabolism it is not repressed but induced by ammonium. This is at least partly due to the ammonium responsive GATA factor, AreA, acting in the nadA promoter as a competitor rather than in synergy with UaY. The adB gene, encoding adenylo-succinate synthetase, which can be considered both a biosynthetic and a salvage pathway enzyme, shares with nadA both ammonium and adenosine induction.
Collapse
Affiliation(s)
- Nathalie Oestreicher
- Université Paris XI, CNRS UMR8621, Institut de Génétique et Microbiologie, Bâtiment 409, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
5
|
Rossi B, Manasse S, Serrani F, Berardi E. Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression. FEMS Yeast Res 2005; 5:1009-17. [PMID: 16214423 DOI: 10.1016/j.femsyr.2005.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/02/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022] Open
Abstract
In the yeast Hansenula polymorpha (Pichia angusta) nitrate assimilation is tightly regulated and subject to a dual control: nitrogen metabolite repression (NMR), triggered by reduced nitrogen compounds, and induction, elicited by nitrate itself. In a previous paper [Serrani, F., Rossi, B. and Berardi, E (2001) Nitrogen metabolite repression in Hansenula polymorpha: the nmrl-l mutation. Curr. Genet. 40, 243-250], we identified five loci (NMR1-NMR5) involved in NMR, and characterised one of them (NMR1), which likely identifies a regulatory factor. Here, we describe two more mutants, namely nmr2-1 and nmr4-1. The first one possibly identifies a regulatory factor involved in nitrogen metabolite repression by various nitrogen sources alternative to ammonium. The second one, apparently involved in ammonium assimilation, probably has sensor functions.
Collapse
Affiliation(s)
- Beatrice Rossi
- Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
6
|
Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol 2004; 2:e398. [PMID: 15534694 PMCID: PMC526180 DOI: 10.1371/journal.pbio.0020398] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 09/09/2004] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known about the mechanisms through which gene expression regulation evolves. To investigate this, we systematically explored the conservation of regulatory networks in fungi by examining the cis-regulatory elements that govern the expression of coregulated genes. We first identified groups of coregulated Saccharomyces cerevisiae genes enriched for genes with known upstream or downstream cis-regulatory sequences. Reasoning that many of these gene groups are coregulated in related species as well, we performed similar analyses on orthologs of coregulated S. cerevisiae genes in 13 other ascomycete species. We find that many species-specific gene groups are enriched for the same flanking regulatory sequences as those found in the orthologous gene groups from S. cerevisiae, indicating that those regulatory systems have been conserved in multiple ascomycete species. In addition to these clear cases of regulatory conservation, we find examples of cis-element evolution that suggest multiple modes of regulatory diversification, including alterations in transcription factor-binding specificity, incorporation of new gene targets into an existing regulatory system, and cooption of regulatory systems to control a different set of genes. We investigated one example in greater detail by measuring the in vitro activity of the S. cerevisiae transcription factor Rpn4p and its orthologs from Candida albicans and Neurospora crassa. Our results suggest that the DNA binding specificity of these proteins has coevolved with the sequences found upstream of the Rpn4p target genes and suggest that Rpn4p has a different function in N. crassa. A systematic examination of the gene regulatory elements in ascomycete fungi reveals striking conservation along with some examples of the ways in which regulatory systems can evolve
Collapse
|
7
|
Snoeijers SS, Pérez-García A, Goosen T, De Wit PJGM. Promoter analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum in the model filamentous fungus Aspergillus nidulans. Curr Genet 2003; 43:96-102. [PMID: 12695849 DOI: 10.1007/s00294-003-0374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/19/2002] [Accepted: 01/06/2003] [Indexed: 10/25/2022]
Abstract
The promoter of avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum contains 12 sequences within a region of 0.6 kb that are reminiscent of the binding sequences of the GATA-type regulator involved in nitrogen utilisation of the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mutational analysis of this 0.6-kb promoter region, fused to the beta-glucuronidase reporter gene, revealed that two regions, each containing two TAGATA boxes in inverted orientation and overlapping by two base pairs, are important for induction of Avr9 promoter activity in A. nidulans. Each overlapping TAGATA box differentially affected Avr9 promoter activity when shifted apart by nucleotide insertions. The other regions, which do not contain two overlapping TAGATA boxes have no, or only a limited, contribution to the inducibility of promoter activity.
Collapse
Affiliation(s)
- Sandor S Snoeijers
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
8
|
Stephenson SA, Hatfield J, Rusu AG, Maclean DJ, Manners JM. CgDN3: an essential pathogenicity gene of colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:929-941. [PMID: 10975650 DOI: 10.1094/mpmi.2000.13.9.929] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A gene of Colletotrichum gloeosporioides that is induced by nitrogen starvation in axenic culture and is expressed at the early stages of infection of the host Stylosanthes guianensis has been identified and its role in pathogenicity tested. The sequence of this gene, named CgDN3, indicated that it encodes a protein of 74 amino acids that contains a predicted 18 amino acid signal sequence for secretion of a basic 54 amino acid mature protein with weak homology to an internal region of plant wall-associated receptor kinases. Mutants of C. gloeosporioides were produced by homologous recombination in which part of the coding sequence and promoter region of the CgDN3 gene was replaced with a hygromycin-resistance gene cassette. Mutations in the CgDN3 gene were confirmed in two independent transformants and Northern (RNA) analysis demonstrated the disrupted CgDN3 gene was not expressed. The mutants had faster mycelial growth rates in vitro but produced spores that germinated to form appressoria normally on the leaf surface. However, the CgDN3 mutants were unable to infect and reproduce on intact host leaves. Microscopic analysis revealed small clusters of necrotic host cells at inoculation sites on leaves, suggesting that these mutants elicited a localized, host hypersensitive-like response. The mutants were able to grow necrotrophically and reproduce on leaves when conidia were inoculated directly onto wound sites. The putative promoter region of the CgDN3 gene was fused to a gene encoding a modified jellyfish green fluorescent protein and introduced into the fungus. Following inoculation, strong expression of green fluorescent protein was observed in primary infection vesicles in infected epidermal cells with weaker expression evident in hyphae growing within infected leaf tissue. These findings indicate that CgDN3 encodes a novel pathogenicity determinant associated with the biotrophic phase of primary infection and required to avert a hypersensitive-like response by a compatible host.
Collapse
Affiliation(s)
- S A Stephenson
- Cooperative Research Centre for Tropical Plant Pathology, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
9
|
Feng B, Marzluf GA. Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol Cell Biol 1998; 18:3983-90. [PMID: 9632783 PMCID: PMC108983 DOI: 10.1128/mcb.18.7.3983] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions.
Collapse
Affiliation(s)
- B Feng
- Department of Biochemistry and Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
10
|
Abstract
In the fungi, nitrogen metabolism is controlled by a complex genetic regulatory circuit which ensures the preferential use of primary nitrogen sources and also confers the ability to use many different secondary nitrogen sources when appropriate. Most structural genes encoding nitrogen catabolic enzymes are subject to nitrogen catabolite repression, mediated by positive-acting transcription factors of the GATA family of proteins. However, certain GATA family members, such as the yeast DAL80 factor, act negatively to repress gene expression. Selective expression of the genes which encode enzymes for the metabolism of secondary nitrogen sources is often achieved by induction, mediated by pathway-specific factors, many of which have a GAL4-like C6/Zn2 DNA binding domain. Regulation within the nitrogen circuit also involves specific protein-protein interactions, as exemplified by the specific binding of the negative-acting NMR protein with the positive-acting NIT2 protein of Neurospora crassa. Nitrogen metabolic regulation appears to play a significant role in the pathogenicity of certain animal and plant fungal pathogens.
Collapse
Affiliation(s)
- G A Marzluf
- Department of Biochemistry, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
11
|
Xiao X, Marzluf GA. Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica 1996; 97:153-63. [PMID: 8901135 DOI: 10.1007/bf00054622] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nit-2 gene of Neurospora crassa encodes the major nitrogen regulatory protein which acts in a positive fashion to activate the expression of many different structural genes during conditions of nitrogen limitation. An E. coli-expressed NIT2/beta-Gal fusion protein binds specifically to DNA in vitro by recognizing GATA core elements. Nuclear extracts prepared from a wild-type N. crassa strain contain a protein factor which displays all of the properties expected for the native NIT2 protein. The native NIT2 protein in nuclear extracts binds with high affinity to DNA fragments which contain two GATA elements, weakly to fragments with a single GATA element, and fails to bind to DNAs which lack these sequences. The DNA binding ability of the protein factor in nuclear extracts is efficiently blocked by a polyclonal antibody developed against the zinc-finger region of NIT2 protein. Western blot analysis with the anti-NIT2 antiserum revealed a specific protein with a size of approximately 110,000 daltons, in excellent agreement with the predicted size of NIT2. Both the specific NIT2 DNA binding activity and the protein detected by Western blot are totally lacking in nuclear extracts of a nit-2 rip mutant strain. These results all support the conclusion that the native NIT2 protein in Neurospora cells has been identified. The NIT2 protein is localised in nuclei and could not be detected in the cytoplasmic fraction of cells subjected to nitrogen derepression or nitrogen repression, indicating that the nuclear import of NIT2 is not regulated.
Collapse
Affiliation(s)
- X Xiao
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
12
|
Chiang TY, Marzluf GA. Binding affinity and functional significance of NIT2 and NIT4 binding sites in the promoter of the highly regulated nit-3 gene, which encodes nitrate reductase in Neurospora crassa. J Bacteriol 1995; 177:6093-9. [PMID: 7592372 PMCID: PMC177447 DOI: 10.1128/jb.177.21.6093-6099.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the filamentous fungus Neurospora crassa, both the global-acting regulatory protein NIT2 and the pathway-specific regulatory protein NIT4 are required to turn on the expression of the nit-3 gene, which encodes nitrate reductase, the first enzyme in the nitrate assimilatory pathway. Three NIT2 binding sites and two NIT4 binding sites have been identified in the 1.3-kb nit-3 promoter region via mobility shift and footprinting experiments with NIT2-beta-galactosidase and NIT4-beta-Gactosidase fusion proteins. Quantitative mobility shift assays were used to examine the affinity of individual NIT2 binding sites for the native NIT2 protein present in N. crassa nuclear extracts. In vivo analysis of nit-3 promoter 5' deletion constructs and individual NIT2 and NIT4 binding-site deletions or mutations revealed that all of the NIT2 and NIT4 binding sites are required for the full level of expression of the nit-3 gene. A cluster of two NIT2 and two NIT4 binding sites located more than 1 kb upstream of the translational start site is required for nit-3 expression, and one NIT2 binding site and one NIT4 site, which are immediately adjacent to each other, are of particular functional importance. A significant NIT2-NIT4 protein-protein interaction might occur upon their binding to nearby sites.
Collapse
Affiliation(s)
- T Y Chiang
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|