1
|
Pengyan Z, Fuli L, Siqing C, Zhourui L, Wenjun W, Xiutao S. Comparative Ubiquitome Analysis under Heat Stress Reveals Diverse Functions of Ubiquitination in Saccharina japonica. Int J Mol Sci 2020; 21:E8210. [PMID: 33153009 PMCID: PMC7663155 DOI: 10.3390/ijms21218210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Ubiquitination is a major post-translational modification involved in nearly all aspects of eukaryotic biology. Previous RNA-Seq studies showed that ubiquitination plays essential roles in the heat tolerance of Saccharina japonica, but to date, large-scale profiling of the ubiquitome in S. japonica has not been reported. To better understand the regulatory roles of ubiquitination in heat responses of S. japonica, we investigated its ubiquitome under normal and heat stress by the combination of affinity enrichment and high-resolution liquid chromatography-tandem mass spectroscopy analysis. Altogether, 3305 lysine ubiquitination sites in 1562 protein groups were identified. After normalization, 152 lysine ubiquitination sites in 106 proteins were significantly upregulated and 208 lysine ubiquitination sites in 131 proteins were significantly downregulated in response to heat stress. Protein annotation and functional analysis suggested that ubiquitination modulates a variety of essential cellular and physiological processes, including but not limited to the ubiquitin-26S proteasome system, ribosome, carbohydrate metabolism, and oxidative phosphorylation. Our results provide a global view of the heat response ubiquitome in S. japonica, and could facilitate future studies on the physiological roles of these ubiquitination-related proteins.
Collapse
Affiliation(s)
- Zhang Pengyan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liu Fuli
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chen Siqing
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liang Zhourui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wang Wenjun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Sun Xiutao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Zhou YH, Ragan MA. Characterization of the polyubiquitin gene in the marine red alga Gracilaria verrucosa. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:215-22. [PMID: 7711065 DOI: 10.1016/0167-4781(95)00006-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have cloned a nuclear gene (UBI6R) and corresponding cDNAs that encode polyubiquitin in the florideophycidean red alga Gracilaria verrucosa. The gene encodes a polyubiquitin composed of six tandem ubiquitin units, followed by a single glutamine residue. The deduced amino acid sequences are identical among all six units, and identical to the ubiquitin of the florideophyte Aglaothamnion neglectum. There is high sequence similarity among the red algal ubiquitins and those of animals, green plants, fungi and several protists. Only one polyubiquitin gene was found by Southern hybridization analysis of G. verrucosa nuclear DNA. The upstream region of the gene is rich in putative cis-acting transcription-regulatory elements, including a putative heat-responsive element. Poly(A) addition to UBI6R mRNA was observed in cDNAs at four different sites, implicating the sequences AATAAA and (or) AGTAAA as poly(A) addition signals. The polyubiquitin genes of red algae show features of concerted evolution, but appear to be subject to less sequence homogenization than those of animals.
Collapse
Affiliation(s)
- Y H Zhou
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia
| | | |
Collapse
|