1
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights. JOURNAL OF PLANT RESEARCH 2019; 132:3-17. [PMID: 30552526 DOI: 10.1007/s10265-018-1077-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 05/14/2023]
Abstract
We provide here the first full chloroplast genome sequence, i.e., the plastome, for a species belonging to the fern order Hymenophyllales. The phylogenetic position of this order within leptosporangiate ferns, together with the general scarcity of information about fern plastomes, places this research as a valuable study on the analysis of the diversity of plastomes throughout fern evolution. Gene content of V. speciosa plastome was similar to that in most ferns, although there were some characteristic gene losses and lineage-specific differences. In addition, an important number of genes required U to C RNA editing for proper protein translation and two genes showed start codons alternative to the canonical AUG (AUA). Concerning gene order, V. speciosa shared the specific 30-kb inversion of euphyllophytes plastomes and the 3.3-kb inversion of fern plastomes, keeping the ancestral gene order shared by eusporangiate and early leptosporangiate ferns. Conversely, V. speciosa has expanded IR regions comprising the rps7, rps12, ndhB and trnL genes in addition to rRNA and other tRNA genes, a condition shared with several eusporangiate ferns, lycophytes and hornworts, as well as most seed plants.
Collapse
Affiliation(s)
- F J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - B Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - J P M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
2
|
Kim HT, Chung MG, Kim KJ. Chloroplast genome evolution in early diverged leptosporangiate ferns. Mol Cells 2014; 37:372-82. [PMID: 24823358 PMCID: PMC4044308 DOI: 10.14348/molcells.2014.2296] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/02/2022] Open
Abstract
In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul 136-701,
Korea
| | | | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul 136-701,
Korea
| |
Collapse
|
3
|
Vogel JC, Russell SJ, Rumsey FJ, Barrett JA, Gibby M. On Hybrid Formation in the Rock FernAspleniumxalternifolium(Aspleniaceae, Pteridophyta). ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00702.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Vogel JC, Russell SJ, Rumsey FJ, Barrett JA, Gibby M. Evidence for Maternal Transmission of Chloroplast DNA in the GenusAsplenium(Aspleniaceae, Pteridophyta). ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00704.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC PLANT BIOLOGY 2011; 11:64. [PMID: 21486489 PMCID: PMC3098776 DOI: 10.1186/1471-2229-11-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/13/2011] [Indexed: 05/12/2023]
Abstract
BACKGROUND The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. RESULTS A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. CONCLUSIONS Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhi-Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ying-Juan Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Abstract
The plastid genome (plastome) is a rich source of phylogenetic and other comparative data in plants. Most land plants possess a plastome of similar structure. However, in a major group of plants, the ferns, a unique plastome structure has evolved. The gene order in ferns has been explained by a series of genomic inversions relative to the plastome organization of seed plants. Here, we examine for the first time the structure of the plastome across fern phylogeny. We used a PCR-based strategy to map and partially sequence plastomes. We found that a pair of partially overlapping inversions in the region of the inverted repeat occurred in the common ancestor of most ferns. However, the ancestral (seed plant) structure is still found in early diverging branches leading to the osmundoid and filmy fern lineages. We found that a second pair of overlapping inversions occurred on a branch leading to the core leptosporangiates. We also found that the unique placement of the gene matK in ferns (lacking a flanking intron) is not a result of a large-scale inversion, as previously thought. This is because the intron loss maps to an earlier point on the phylogeny than the nearby inversion. We speculate on why inversions may occur in pairs and what this may mean for the dynamics of plastome evolution.
Collapse
Affiliation(s)
- Paul G Wolf
- Department of Biology, and Ecology Center, Utah State University, Logan, UT 84322, USA.
| | | | | |
Collapse
|
7
|
Stein DB, Hutton C, Conant DS, Haufler CH, Werth CR. Reconstructing Dryopteris "semicristata" (Dryopteridaceae): Molecular profiles of tetraploids verify their undiscovered diploid ancestor. AMERICAN JOURNAL OF BOTANY 2010; 97:998-1004. [PMID: 21622469 DOI: 10.3732/ajb.0900355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Discovering missing ancestors is essential to understanding the evolutionary history of biodiversity on Earth. Evidence from extinct species can provide links for reconstructing intricate patterns of reticulate relationships among extant descendents. When fossils are unavailable and other evidence yields competing hypotheses to explain species ancestry, data from proteins and DNA can help resolve conflicts and generate novel perspectives. The identity of a parent shared by two tetraploid species in the cosmopolitan fern genus Dryopteris has remained elusive for more than 50 years. Based on available data, four hypotheses were developed previously, each providing a different resolution to this uncertainty. • METHODS New molecular evidence from studies of isozymes and restriction site analysis of chloroplast DNA tested the competing hypotheses about the diploid ancestors of these two extant Dryopteris polyploids. • KEY RESULTS The results falsify two of the hypotheses, resolve the uncertainty in the third, and support the fourth. • CONCLUSIONS Our data validate the prior existence of Dryopteris "semicristata," which was proposed 38 years ago as a diploid progenitor of the allotetraploids D. cristata and D. carthusiana but has never been collected. After developing a phylogeny using the new molecular data, we describe a plausible morphology for D. "semicristata" by extrapolating likely character states from related extant species.
Collapse
Affiliation(s)
- Diana B Stein
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075 USA
| | | | | | | | | |
Collapse
|
8
|
Small RL, Lickey EB, Shaw J, Hauk WD. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 2005; 36:509-22. [PMID: 15935702 DOI: 10.1016/j.ympev.2005.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 04/06/2005] [Accepted: 04/20/2005] [Indexed: 11/19/2022]
Abstract
Noncoding DNA sequences from numerous regions of the chloroplast genome have provided a significant source of characters for phylogenetic studies in seed plants. In lycophytes and monilophytes (leptosporangiate ferns, eusporangiate ferns, Psilotaceae, and Equisetaceae), on the other hand, relatively few noncoding chloroplast DNA regions have been explored. We screened 30 lycophyte and monilophyte species to determine the potential utility of PCR amplification primers for 18 noncoding chloroplast DNA regions that have previously been used in seed plant studies. Of these primer sets eight appear to be nearly universally capable of amplifying lycophyte and monilophyte DNAs, and an additional six are useful in at least some groups. To further explore the application of noncoding chloroplast DNA, we analyzed the relative phylogenetic utility of five cpDNA regions for resolving relationships in Botrychium s.l. (Ophioglossaceae). Previous studies have evaluated both the gene rbcL and the trnL(UAA)-trnF(GAA) intergenic spacer in this group. To these published data we added sequences of the trnS(GCU)-trnG(UUC) intergenic spacer + the trnG(UUC) intron region, the trnS(GGA)-rpS4 intergenic spacer+rpS4 gene, and the rpL16 intron. Both the trnS(GCU)-trnG(UUC) and rpL16 regions are highly variable in angiosperms and the trnS(GGA)-rpS4 region has been widely used in monilophyte phylogenetic studies. Phylogenetic resolution was equivalent across regions, but the strength of support for the phylogenies varied among regions. Of the five sampled regions the trnS(GCU)-trnG(UUC) spacer+trnG(UUC) intron region provided the strongest support for the inferred phylogeny.
Collapse
Affiliation(s)
- Randall L Small
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|
9
|
Hasebe M, Ito M, Kofuji R, Ueda K, Iwatsuki K. Phylogenetic relationships of ferns deduced from rbcL gene sequence. J Mol Evol 1993; 37:476-82. [PMID: 8283479 DOI: 10.1007/bf00160428] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Part of the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) gene (rbcL) was sequenced from three fern species: Adiantum capillus-veneris, Botrypus strictus, and Osmunda cinnamomea var. fokiensis. This region included 1,333 base pairs, about 90% of the gene. Maximum likelihood analysis of the deduced amino acid sequences indicated that (1) Botrypus (Ophioglossaceae) clustered monophyletically with other ferns (Adiantum, Angiopteris, Osmunda); the closest relative to Botrypus among the three species was Osmunda, which did not support the hypothesis that the Ophioglossaceae are linked to the progymnosperm-seed plant lineage. (2) Eusporangiate ferns containing Botrypus (Ophioglossaceae) and Angiopteris (Marattiaceae) were a paraphyletic group. (3) Seed plants and the four fern species examined formed a monophyletic group, but ferns and bryophytes (liverwort) did not. Variations in rates of substitution for synonymous and nonsynonymous codons were found in fern lineages.
Collapse
Affiliation(s)
- M Hasebe
- Botanical Gardens, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Stein DB. Isolation and comparison of nucleic acids from land plants: nuclear and organellar genes. Methods Enzymol 1993; 224:153-67. [PMID: 7505377 DOI: 10.1016/0076-6879(93)24013-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D B Stein
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075
| |
Collapse
|
11
|
Hasebe M, Iwatsuki K. Gene localization on the chloroplast DNA of the maiden hair fern;Adiantum capillus-veneris. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf02497656] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Raubeson LA, Jansen RK. Chloroplast DNA Evidence on the Ancient Evolutionary Split in Vascular Land Plants. Science 1992; 255:1697-9. [PMID: 17749424 DOI: 10.1126/science.255.5052.1697] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two groups of extant plants, lycopsids and psilopsids, alternatively have been suggested to be the living representatives of the earliest diverging lineage in vascular plant evolution. The chloroplast DNA (cpDNA) gene order is known to contain an inversion in bryophytes and tracheophytes relative to one another. Characterization of tracheophyte cpDNAs shows that lycopsids share the gene order with bryophytes, whereas all other vascular plants share the inverted gene order. The distribution of this character provides strong support for the fundamental nature of the phylogenetic separation of lycopsids and marks the ancient evolutionary split in early vascular land plants.
Collapse
|