1
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
2
|
Ma C, Liu J, Tang J, Sun Y, Jiang X, Zhang T, Feng Y, Liu Q, Wang L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb Cell Fact 2023; 22:97. [PMID: 37161391 PMCID: PMC10170752 DOI: 10.1186/s12934-023-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.
Collapse
Affiliation(s)
- Chixiang Ma
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Jialong Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Tang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanlu Sun
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Xiaojie Jiang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Tongtong Zhang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qinghua Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Fonseca LM, Parreiras LS, Murakami MT. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:93. [PMID: 32461765 PMCID: PMC7243233 DOI: 10.1186/s13068-020-01732-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The path for the development of hypersecreting strains of Trichoderma reesei capable of producing industrially relevant enzyme titers remains elusive despite over 70 years of research and industrial utilization. Herein, we describe the rational engineering of the publicly available T. reesei RUT-C30 strain and a customized process for cellulase production based on agroindustrial by-products. RESULTS A CRISPR/Cas9 system was used to introduce six genetic modifications in RUT-C30. Implemented changes included the constitutive expression of a mutated allele of the cellulase master regulator XYR1, the expression of two heterologous enzymes, the β-glucosidase CEL3A from Talaromyces emersonii and the invertase SUC1 from Aspergillus niger, and the deletion of genes encoding the cellulase repressor ACE1 and the extracellular proteases SLP1 and PEP1. These alterations resulted in a remarkable increase of protein secretion rates by RUT-C30 and amended its well described β-glucosidase deficiency while enabling the utilization of sucrose and eliminating the requirement of inducing sugars for enzyme production. With a developed sugarcane molasses-based bioprocess, the engineered strain reached an extracellular protein titer of 80.6 g L-1 (0.24 g L-1 h-1), which is the highest experimentally supported titer so far reported for T. reesei. The produced enzyme cocktail displayed increased levels of cellulase and hemicellulase activities, with particularly large increments being observed for the specific activities of β-glucosidase (72-fold) and xylanase (42-fold). Notably, it also exhibited a saccharification efficiency similar to that of a commercially available cellulase preparation in the deconstruction of industrially pretreated sugarcane straw. CONCLUSION This work demonstrates the rational steps for the development of a cellulase hyperproducing strain from a well-characterized genetic background available in the public domain, the RUT-C30, associated with an industrially relevant bioprocess, paving new perspectives for Trichoderma research on cellulase production.
Collapse
Affiliation(s)
- Lucas Miranda Fonseca
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Lucas Salera Parreiras
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| |
Collapse
|
4
|
Mao S, Liu Y, Yang J, Ma X, Zeng F, Zhang Z, Wang S, Han H, Qin HM, Lu F. Cloning, expression and characterization of a novel fructosyltransferase from Aspergillus niger and its application in the synthesis of fructooligosaccharides. RSC Adv 2019; 9:23856-23863. [PMID: 35530578 PMCID: PMC9069702 DOI: 10.1039/c9ra02520k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022] Open
Abstract
Fructosyltransferases have been used in the industrial production of fructooligosaccharides (FOS).
Collapse
|
5
|
Ike M, Tokuyasu K. Cellulase Production of Trichoderma reesei ( Hypocrea jecorina) by Continuously Fed Cultivation Using Sucrose as Primary Carbon Source. J Appl Glycosci (1999) 2018; 65:51-56. [PMID: 34354513 PMCID: PMC8056898 DOI: 10.5458/jag.jag.jag-2018_0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/29/2018] [Indexed: 10/31/2022] Open
Abstract
To expand the range of soluble carbon sources for our enzyme production system, we investigated the properties of sucrose utilization and its effect on cellulase production by Trichoderma reesei M2-1. We performed batch cultivation of T. reesei M2-1 on sucrose and related sugars along with cellobiose, which was used as a cellulase inducer. The results clearly revealed that the hydrolysis products of sucrose, i.e. glucose and fructose, but not sucrose, can be used as a carbon source for enzyme production. In a 10-day continuous feeding experiment using invertase-treated sucrose/cellobiose, the fungal strain produced cellulases with a filter paper-degrading activity of 20.3 U/mL and production efficiency of 254 U/g-carbon sources. These values were comparable with those of glucose/cellobiose feeding (21.2 U/mL and 265 U/g-carbon sources, respectively). Furthermore, the comparison of the specific activities clearly indicated that the compositions of both produced enzymes were similar. Therefore, enzymatically hydrolyzed sucrose can be utilized as an alternative carbon source to glucose in our enzyme production system with T. reesei M2-1.
Collapse
Affiliation(s)
- Masakazu Ike
- 1 Food Biotechnology Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Food Biotechnology Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
6
|
Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR, Tsang A, de Vries RP. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud Mycol 2018; 91:61-78. [PMID: 30425417 PMCID: PMC6231085 DOI: 10.1016/j.simyco.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.
Collapse
Affiliation(s)
- M V Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J Brandl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - E McDonnell
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - K Strasser
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - T T M Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - S Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - J L Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - T C Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - I V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - M R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - A Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R P de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
7
|
Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 2017; 18:900. [PMID: 29169319 PMCID: PMC5701360 DOI: 10.1186/s12864-017-4164-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. Results The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4164-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgit S Gruben
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: ATGM, Avans University of Applied Sciences, Lovensdijkstraat 61-63, 4818, AJ, Breda, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Ronald P De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands. .,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Druzhinina IS, Kubicek CP. Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 2017; 10:1485-1499. [PMID: 28557371 PMCID: PMC5658622 DOI: 10.1111/1751-7915.12726] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022] Open
Abstract
Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress.
Collapse
Affiliation(s)
- Irina S. Druzhinina
- Microbiology GroupResearch Area Biochemical TechnologyInstitute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria
| | - Christian P. Kubicek
- Microbiology GroupResearch Area Biochemical TechnologyInstitute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria
- Present address:
Steinschötelgasse 7Wien1100Austria
| |
Collapse
|
9
|
Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:30. [PMID: 28184245 PMCID: PMC5289010 DOI: 10.1186/s13068-017-0717-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/25/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. RESULTS Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous β-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. CONCLUSIONS In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei. With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.
Collapse
Affiliation(s)
- Simo Ellilä
- VTT Brasil Ltda., Barueri, Sao Paulo Brazil
- VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland
| | | | | | - Junio Cota
- VTT Brasil Ltda., Barueri, Sao Paulo Brazil
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais (UFMG), Montes Claros, MG Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de Sao Paulo, Ribeirão Preto, SP Brazil
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland
| | - Vera Sacon
- VTT Brasil Ltda., Barueri, Sao Paulo Brazil
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland
| |
Collapse
|
10
|
Castillo S, Barth D, Arvas M, Pakula TM, Pitkänen E, Blomberg P, Seppanen-Laakso T, Nygren H, Sivasiddarthan D, Penttilä M, Oja M. Whole-genome metabolic model of Trichoderma reesei built by comparative reconstruction. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:252. [PMID: 27895706 PMCID: PMC5117618 DOI: 10.1186/s13068-016-0665-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/10/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Trichoderma reesei is one of the main sources of biomass-hydrolyzing enzymes for the biotechnology industry. There is a need for improving its enzyme production efficiency. The use of metabolic modeling for the simulation and prediction of this organism's metabolism is potentially a valuable tool for improving its capabilities. An accurate metabolic model is needed to perform metabolic modeling analysis. RESULTS A whole-genome metabolic model of T. reesei has been reconstructed together with metabolic models of 55 related species using the metabolic model reconstruction algorithm CoReCo. The previously published CoReCo method has been improved to obtain better quality models. The main improvements are the creation of a unified database of reactions and compounds and the use of reaction directions as constraints in the gap-filling step of the algorithm. In addition, the biomass composition of T. reesei has been measured experimentally to build and include a specific biomass equation in the model. CONCLUSIONS The improvements presented in this work on the CoReCo pipeline for metabolic model reconstruction resulted in higher-quality metabolic models compared with previous versions. A metabolic model of T. reesei has been created and is publicly available in the BIOMODELS database. The model contains a biomass equation, reaction boundaries and uptake/export reactions which make it ready for simulation. To validate the model, we dem1onstrate that the model is able to predict biomass production accurately and no stoichiometrically infeasible yields are detected. The new T. reesei model is ready to be used for simulations of protein production processes.
Collapse
Affiliation(s)
- Sandra Castillo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Dorothee Barth
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Tiina M. Pakula
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Esa Pitkänen
- Department of Computer Science, University of Helsinki, P.O. 68 (Gustaf Hällströmin katu 2b), 00014 Helsinki, Finland
| | - Peter Blomberg
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | | | - Heli Nygren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | | | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| |
Collapse
|
11
|
|
12
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
13
|
Bischof RH, Horejs J, Metz B, Gamauf C, Kubicek CP, Seiboth B. L-Methionine repressible promoters for tuneable gene expression in Trichoderma reesei. Microb Cell Fact 2015; 14:120. [PMID: 26271614 PMCID: PMC4536894 DOI: 10.1186/s12934-015-0308-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei is the main producer of lignocellulolytic enzymes that are required for plant biomass hydrolysis in the biorefinery industry. Although the molecular toolbox for T. reesei is already well developed, repressible promoters for strain engineering and functional genomics studies are still lacking. One such promoter that is widely employed for yeasts is that of the L-methionine repressible MET3 gene, encoding ATP sulphurylase. RESULTS We show that the MET3 system can only be applied for T. reesei when the cellulase inducing carbon source lactose is used but not when wheat straw, a relevant lignocellulosic substrate for enzyme production, is employed. We therefore performed a transcriptomic screen for genes that are L-methionine repressible in a wheat straw culture. This analysis retrieved 50 differentially regulated genes of which 33 were downregulated. Among these, genes encoding transport proteins as well as iron containing DszA like monooxygenases and TauD like dioxygenases were strongly overrepresented. We show that the promoter region of one of these dioxygenases can be used for the strongly repressible expression of the Aspergillus niger sucA encoded extracellular invertase in T. reesei wheat straw cultures. This system is also portable to other carbon sources including D-glucose and glycerol as demonstrated by the repressible expression of the Escherichia coli lacZ encoded ß-galactosidase in T. reesei. CONCLUSION We describe a novel, versatile set of promoters for T. reesei that can be used to drive recombinant gene expression in wheat straw cultures at different expression strengths and in an L-methionine repressible manner. The dioxygenase promoter that we studied in detail is furthermore compatible with different carbon sources and therefore applicable for manipulating protein production as well as functional genomics with T. reesei.
Collapse
Affiliation(s)
- Robert H Bischof
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Jennifer Horejs
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Benjamin Metz
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Vogelbusch Biocommodities GmbH, Blechturmgasse 11, 1051, Vienna, Austria.
| | - Christian Gamauf
- Biotech and Renewables Center, Clariant GmbH, 81477, Munich, Germany.
| | - Christian P Kubicek
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bernhard Seiboth
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| |
Collapse
|
14
|
Novel Strategies for Genomic Manipulation of Trichoderma reesei with the Purpose of Strain Engineering. Appl Environ Microbiol 2015; 81:6314-23. [PMID: 26150462 PMCID: PMC4542242 DOI: 10.1128/aem.01545-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/29/2015] [Indexed: 01/18/2023] Open
Abstract
The state-of-the-art procedure for gene insertions into Trichoderma reesei is a cotransformation of two plasmids, one bearing the gene of interest and the other a marker gene. This procedure yields up to 80% transformation efficiency, but both the number of integrated copies and the loci of insertion are unpredictable. This can lead to tremendous pleiotropic effects. This study describes the development of a novel transformation system for site-directed gene insertion based on auxotrophic markers. For this purpose, we tested the applicability of the genes asl1 (encoding an enzyme of the l-arginine biosynthesis pathway), the hah1 (encoding an enzyme of the l-lysine biosynthesis pathway), and the pyr4 (encoding an enzyme of the uridine biosynthesis pathway). The developed transformation system yields strains with an additional gene at a defined locus that are prototrophic and ostensibly isogenic compared to their parental strain. A positive transformation rate of 100% was achieved due to the developed split-marker system. Additionally, a double-auxotrophic strain that allows multiple genomic manipulations was constructed, which facilitates metabolic engineering purposes in T. reesei. By employing goxA of Aspergillus niger as a reporter system, the influence on the expression of an inserted gene caused by the orientation of the insertion and the transformation strategy used could be demonstrated. Both are important aspects to be considered during strain engineering.
Collapse
|
15
|
Yuan XL, Roubos JA, van den Hondel CAMJJ, Ram AFJ. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 2007; 279:11-26. [PMID: 17917744 PMCID: PMC2129107 DOI: 10.1007/s00438-007-0290-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
Abstract
The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.
Collapse
Affiliation(s)
- Xiao-Lian Yuan
- Institute of Biology, Clusius Laboratory, Molecular Microbiology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | - Cees A. M. J. J. van den Hondel
- Institute of Biology, Clusius Laboratory, Molecular Microbiology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Arthur F. J. Ram
- Institute of Biology, Clusius Laboratory, Molecular Microbiology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| |
Collapse
|
16
|
Wallis GL, Hemming FW, Peberdy JF. Secretion of two beta-fructofuranosidases by Aspergillus niger growing in sucrose. Arch Biochem Biophys 1997; 345:214-22. [PMID: 9308892 DOI: 10.1006/abbi.1997.0228] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aspergillus niger is induced to secrete two invertases, named SUC 1 and SUC 2, when grown on a minimal medium containing sucrose. Although, both have been classified as beta-D-fructofuranoside fructohydrolases, SUC 2 also possesses inulin hydrolytic activity (sucrose/inulin activity ratio of 4). These activities have been separated from each other and almost completely purified by anion-exchange, lectin affinity chromatography, and chromatofocusing. SUC 1 appeared as a single glycoprotein band on PAGE and SDS-PAGE corresponding in size to 250 and 125 kDa, respectively, compared with a much broader band (suggesting greater glycan heterogeneity) of 210-240 and 90-120 kDa for SUC 2. Therefore, both may be dimers, in their natural conformation. The glycan part of both contained the same monosaccharides: mannose, glucose, galactose, and N-acetylglucosamine; however, SUC 1 had approximately 10-fold more mannose and this was utilized to separate it from SUC 2 by Galanthus nivalis lectin affinity. Both the apparent Km values and the pH activity curves were different; SUC 1 did not show normal Michaelis-Menten kinetics to sucrose and apparent Michaelis constants of 30 and 160 mM were obtained. Activity was observed over a large range of pH 4.5-9 with a maximum at pH 6. In contrast, SUC 2 exhibited a Km of 40 and 1.7 mM to sucrose and inulin, respectively, with a pH optimum of 5.0 for both. Treatment with endo-beta-N-acetylglucosaminidase suggests that in both SUC 1 and SUC 2 some of the glycan present was N-linked glycan but that the differences in enzyme activities were not due to the N-linked moiety.
Collapse
Affiliation(s)
- G L Wallis
- Department of Biochemistry, Medical School, University of Nottingham, United Kingdom
| | | | | |
Collapse
|
17
|
S�rensen TK, Wallis GLF, Peberdy JF. Fungal protoplasts as tools for studies on protein secretion. Biotechnol Lett 1996. [DOI: 10.1007/bf00129338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|