1
|
Jha B, Kumar D, Sharma A, Dwivedy A, Singh R, Biswal BK. Identification and structural characterization of a histidinol phosphate phosphatase from Mycobacterium tuberculosis. J Biol Chem 2018; 293:10102-10118. [PMID: 29752410 PMCID: PMC6028948 DOI: 10.1074/jbc.ra118.002299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/10/2018] [Indexed: 01/07/2023] Open
Abstract
The absence of a histidine biosynthesis pathway in humans, coupled with histidine essentiality for survival of the important human pathogen Mycobacterium tuberculosis (Mtb), underscores the importance of the bacterial enzymes of this pathway as major antituberculosis drug targets. However, the identity of the mycobacterial enzyme that functions as the histidinol phosphate phosphatase (HolPase) of this pathway remains to be established. Here, we demonstrate that the enzyme encoded by the Rv3137 gene, belonging to the inositol monophosphatase (IMPase) family, functions as the Mtb HolPase and specifically dephosphorylates histidinol phosphate. The crystal structure of Rv3137 in apo form enabled us to dissect its distinct structural features. Furthermore, the holo-complex structure revealed that a unique cocatalytic multizinc-assisted mode of substrate binding and catalysis is the hallmark of Mtb HolPase. Interestingly, the enzyme-substrate complex structure unveiled that although monomers possess individual catalytic sites they share a common product-exit channel at the dimer interface. Furthermore, target-based screening against HolPase identified several small-molecule inhibitors of this enzyme. Taken together, our study unravels the missing enzyme link in the Mtb histidine biosynthesis pathway, augments our current mechanistic understanding of histidine production in Mtb, and has helped identify potential inhibitors of this bacterial pathway.
Collapse
Affiliation(s)
- Bhavya Jha
- From the Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India and
| | - Deepak Kumar
- From the Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India and
| | - Arun Sharma
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Abhisek Dwivedy
- From the Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India and
| | - Ramandeep Singh
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Bichitra Kumar Biswal
- From the Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India and , Recipient of funding from the National Institute of Immunology, New Delhi, India. To whom correspondence should be addressed. Tel.:
91-11-26703705; Fax:
91-11-26742125; E-mail:
| |
Collapse
|
2
|
Ahangar MS, Vyas R, Nasir N, Biswal BK. Structures of native, substrate-bound and inhibited forms of Mycobacterium tuberculosis imidazoleglycerol-phosphate dehydratase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2461-7. [PMID: 24311587 DOI: 10.1107/s0907444913022579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 11/10/2022]
Abstract
Imidazoleglycerol-phosphate dehydratase (IGPD; HisB), which catalyses the conversion of imidazoleglycerol-phosphate (IGP) to imidazoleacetol-phosphate in the histidine biosynthesis pathway, is absent in mammals. This feature makes it an attractive target for herbicide discovery. Here, the crystal structure of Mycobacterium tuberculosis (Mtb) IGPD is reported together with the first crystal structures of substrate-bound and inhibited (by 3-amino-1,2,4-triazole; ATZ) forms of IGPD from any organism. The overall tertiary structure of Mtb IGPD, a four-helix-bundle sandwiched between two four-stranded mixed β-sheets, resembles the three-dimensional structures of IPGD from other organisms; however, Mtb IGPD possesses a unique structural feature: the insertion of a one-turn 310-helix followed by a loop ten residues in length. The functional form of IGPD is 24-meric, exhibiting 432 point-group symmetry. The structure of the IGPD-IGP complex revealed that the imidazole ring of the IGP is firmly anchored between the two Mn atoms, that the rest of the substrate interacts through hydrogen bonds mainly with residues Glu21, Arg99, Glu180, Arg121 and Lys184 which protrude from three separate protomers and that the 24-mer assembly contains 24 catalytic centres. Both the structural and the kinetic data demonstrate that the inhibitor 3-amino-1,2,4-triazole inhibits IGPD competitively.
Collapse
Affiliation(s)
- Mohammad Syed Ahangar
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
3
|
Dabizzi S, Ammannato S, Fani R. Expression of horizontally transferred gene clusters: activation by promoter-generating mutations. Res Microbiol 2001; 152:539-49. [PMID: 11501672 DOI: 10.1016/s0923-2508(01)01228-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The occurrence of promoter-generating mutations allowing the transcription of heterologous genes has been studied in a system based on the plasmid-mediated conjugal transfer of histidine biosynthetic genes from a donor bacterium (Azospirillum brasilense) into a heterologous Escherichia coli mutant population lacking histidine biosynthetic ability and initially unable to recognize the transcriptional signal of the introgressed gene(s). Under selective stressful conditions, His+ revertants accumulated in the E. coli His- culture. The number of His+ colonies was dependent on the time of incubation under selective conditions, the strength of selective pressure, and on the crowding of cells plated; moreover, it was independent of the physiological status of the cell (i.e. the growth phase). Sequence analysis of plasmid DNA extracted from E. coli His+ revertants revealed that single base substitutions in the region upstream of the A. brasilense his operon resulted in an adjustment of the pre-existing sequence that was rendered similar to the E. coli -10 promoter sequence and transcriptable by the host RNA-polymerase. One particular transition (C --> T) was predominant in the His+ revertants. Data presented here indicated that the barriers to the expression of horizontally transferred heterologous genes or operons may be overcome in a short time scale and at high frequency, and supported the selfish operon model on the origin and evolution of gene clusters.
Collapse
Affiliation(s)
- S Dabizzi
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Florence, Italy
| | | | | |
Collapse
|
4
|
Tripathi AK, Mishra BM. Isolation and characterization of Azospirillum lipoferum locus that complements Rhizobium meliloti dctA and dctB mutations. Can J Microbiol 1996; 42:503-6. [PMID: 8640608 DOI: 10.1139/m96-067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A DNA probe containing the structural gene for dicarboxylate transport (dct A) of Rhizobium meliloti hybridized strongly with the fragments of Azospirillum lipoferum genomic DNA. A genomic library of A. lipoferum was screened for the dct A gene by complementation of a dct A mutant of Rhizobium meliloti. A recombinant cosmid, p37D, capable of restoring growth of the dct A mutant on dicarboxylates was isolated and found to hybridize to the dctA probe. The ability of p37D to complement the dct B mutant of R. meloliti indicated that dct A and dct B genes in A. lipoferum may be organized adjacent to each other.
Collapse
Affiliation(s)
- A K Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
5
|
Kuenzler M, Balmelli T, Egli CM, Paravicini G, Braus GH. Cloning, primary structure, and regulation of the HIS7 gene encoding a bifunctional glutamine amidotransferase: cyclase from Saccharomyces cerevisiae. J Bacteriol 1993; 175:5548-58. [PMID: 8366040 PMCID: PMC206611 DOI: 10.1128/jb.175.17.5548-5558.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae HIS7 gene was cloned by its location immediately downstream of the previously isolated and characterized ARO4 gene. The two genes have the same orientation with a distance of only 416 bp between the two open reading frames. The yeast HIS7 gene represents the first isolated eukaryotic gene encoding the enzymatic activities which catalyze the fifth and sixth step in histidine biosynthesis. The open reading frame of the HIS7 gene has a length of 1,656 bp resulting in a gene product of 552 amino acids with a calculated molecular weight of 61,082. Two findings implicate a bifunctional nature of the HIS7 gene product. First, the N-terminal and C-terminal segments of the deduced HIS7 amino acid sequence show significant homology to prokaryotic monofunctional glutamine amidotransferases and cyclases, respectively, involved in histidine biosynthesis. Second, the yeast HIS7 gene is able to suppress His auxotrophy of corresponding Escherichia coli hisH and hisF mutants. HIS7 gene expression is regulated by the general control system of amino acid biosynthesis. GCN4-dependent and GCN4-independent (basal) transcription use different initiator elements in the HIS7 promoter.
Collapse
Affiliation(s)
- M Kuenzler
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Fani R, Alifano P, Allotta G, Bazzicalupo M, Carlomagno MS, Gallori E, Rivellini F, Polsinelli M. The histidine operon of Azospirillum brasilense: organization, nucleotide sequence and functional analysis. Res Microbiol 1993; 144:187-200. [PMID: 8210676 DOI: 10.1016/0923-2508(93)90044-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 3457-base pair fragment of Azospirillum brasilense DNA which complemented mutations in the hisA and hisF genes of Escherichia coli was sequenced. The sequence analysis revealed the presence of six major contiguous open reading frames (ORF). The comparison of the predicted amino acid sequence of these ORF with those encoded by the eubacterial, archaebacterial and eukaryotic his genes sequenced thus far revealed that four of them have a significant degree of homology with the E. coli hisH, hisA, hisF and the C-terminal domain of the hisI gene products. S1 mapping experiments indicated that the putative transcription start site coincided with the AUG translational initiation codon of the hisBd gene, the first gene of the A. brasilense his operon. Downstream from the last ORF, a sequence was identified which functions as a Rho-independent transcription terminator. Comparison of amino acid sequences, gene order and organization and evolutionary aspects of the A. brasilense his cluster are discussed.
Collapse
Affiliation(s)
- R Fani
- Dipartimento di Biologia Animale e Genetica, Università degli Studi, Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Limauro D, Avitabile A, Puglia AM, Bruni CB. Further characterization of the histidine gene cluster of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis of hisD. Res Microbiol 1992; 143:683-93. [PMID: 1488552 DOI: 10.1016/0923-2508(92)90063-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have further characterized the genomic region of Streptomyces coelicolor A3(2) that contains genes involved in the biosynthesis of histidine. A 2,357-base pair fragment contained in plasmid pSCH3328 that complemented hisD mutations has been sequenced. Computer analysis revealed an open reading frame that encodes a protein with significant homology to the Escherichia coli, Salmonella typhimurium and Mycobacterium smegmatis hisD product, Saccharomyces cerevisiae HIS4C, and Neurospora crassa his3 gene products. Two other contiguous open reading frames oriented divergently with respect to hisD did not show significant similarity with any of the his genes or to other sequences included in the gene bank. S1 nuclease mapping and primer extension experiments indicate that the transcription initiation site of the his-specific mRNA coincides with the GUG translation initiation codon of the hisD cistron.
Collapse
Affiliation(s)
- D Limauro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli, Italy
| | | | | | | |
Collapse
|
8
|
Limauro D, Avitabile A, Cappellano C, Puglia AM, Bruni CB. Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gene 1990; 90:31-41. [PMID: 2199329 DOI: 10.1016/0378-1119(90)90436-u] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biochemical and genetic data indicate that in Streptomyces coelicolor A3(2) the majority of the genes involved in the biosynthesis of histidine are clustered in a small region of the chromosome [Carere et al., Mol. Gen. Genet. 123 (1973) 219-224; Russi et al., Mol. Gen. Genet. 123 (1973) 225-232]. To investigate the structural organization and the regulation of these genes, we have constructed genomic libraries from S. coelicolor A3(2) in pUC vectors. Recombinant clones were isolated by complementation of an Escherichia coli hisBd auxotroph. A recombinant plasmid containing a 3.4-kb fragment of genomic DNA was further characterized. When cloned in the plasmid vector, pIJ699, this fragment was able to complement S. coelicolor A3(2) hisB mutants. Overlapping clones spanning a 15-kb genomic region were isolated by screening other libraries with labeled DNA fragments obtained from the first clone. Derivative clones were able to complement mutations in four different cistrons of the his cluster of S. coelicolor A3(2). Nucleotide sequence analysis of a 4-kb region allowed the identification of five ORFs which showed significant homology with the his gene products of E. coli. The order of the genes in S. coelicolor A3(2) (5'--hisD-hisC-hisBd-hisH-hisA-3') is the same as in the his operon of E. coli.
Collapse
Affiliation(s)
- D Limauro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli, Italy
| | | | | | | | | |
Collapse
|
9
|
Verreth C, Cammue B, Swinnen P, Crombez D, Michielsen A, Michiels K, Van Gool A, Vanderleyden J. Cloning and expression in Escherichia coli of the Azospirillum brasilense Sp7 gene encoding ampicillin resistance. Appl Environ Microbiol 1989; 55:2056-60. [PMID: 2675764 PMCID: PMC203002 DOI: 10.1128/aem.55.8.2056-2060.1989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Azospirillum brasilense ATCC 29145 gene coding for beta-lactamase was cloned in Escherichia coli. The gene was expressed in E. coli from its own promoter as a 30-kilodalton protein, conferring resistance to high levels of beta-lactam antibiotics. The DNA sequence containing the beta-lactamase gene was found to be highly amplified in the Azospirillum genome, scattered in the chromosomal as well as in the plasmidic DNA.
Collapse
Affiliation(s)
- C Verreth
- F. A. Janssens Memorial Laboratory for Genetics, University of Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fani R, Bazzicalupo M, Damiani G, Bianchi A, Schipani C, Sgaramella V, Polsinelli M. Cloning of histidine genes of Azospirillum brasilense: organization of the ABFH gene cluster and nucleotide sequence of the hisB gene. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:224-9. [PMID: 2664449 DOI: 10.1007/bf00334360] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A cluster of four Azospirillum brasilense histidine biosynthetic genes, hisA, hisB, hisF and hisH, was identified on a 4.5 kb DNA fragment and its organization studied by complementation analysis of Escherichia coli mutations and nucleotide sequence. The nucleotide sequence of a 1.3 kb fragment that complemented the E. coli hisB mutation was determined and an ORF of 624 nucleotides which can code for a protein of 207 amino acids was identified. A significant base sequence homology with the carboxy-terminal moiety of the E. coli hisB gene (0.53) and the Saccharomyces cerevisiae HIS3 gene (0.44), coding for an imidazole glycerolphosphate dehydratase activity was found. The amino acid sequence and composition, the hydropathic profile and the predicted secondary structures of the yeast, E. coli and A. brasilense proteins were compared. The significance of the data presented is discussed.
Collapse
Affiliation(s)
- R Fani
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Carlomagno MS, Chiariotti L, Alifano P, Nappo AG, Bruni CB. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol 1988; 203:585-606. [PMID: 3062174 DOI: 10.1016/0022-2836(88)90194-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have determined the complete nucleotide sequence of the histidine operons of Escherichia coli and of Salmonella typhimurium. This structural information enabled us to investigate the expression and organization of the histidine operon. The proteins coded by each of the putative histidine cistrons were identified by subcloning appropriate DNA fragments and by analyzing the polypeptides synthesized in minicells. A structural comparison of the gene products was performed. The histidine messenger RNA molecules produced in vivo and the internal transcription initiation sites were identified by Northern blot analysis and S1 nuclease mapping. A comparative analysis of the different transcriptional and translational control elements within the two operons reveals a remarkable preservation for most of them except for the intercistronic region between the first (hisG) and second (hisD) structural genes and for the rho-independent terminator of transcription at the end of the operon. Overall, the operon structure is very compact and its expression appears to be regulated at several levels.
Collapse
Affiliation(s)
- M S Carlomagno
- Centro di Endocrinologia ed Oncologia, Sperimentale del Consiglio, Nazionale delle Ricerche, University of Naples, Napoli, Italy
| | | | | | | | | |
Collapse
|
12
|
Fani R, Bazzicalupo M, Ricci F, Schipani C, Polsinelli M. A plasmid vector for the selection and study of transcription promoters inAzospirillum brasilense. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02950.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|