1
|
Bommisetti P, Bandarian V. Insights into the Mechanism of Installation of 5-Carboxymethylaminomethyl Uridine Hypermodification by tRNA-Modifying Enzymes MnmE and MnmG. J Am Chem Soc 2023; 145:26947-26961. [PMID: 38050996 PMCID: PMC10723064 DOI: 10.1021/jacs.3c10182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The evolutionarily conserved bacterial proteins MnmE and MnmG (and their homologues in Eukarya) install a 5-carboxymethylaminomethyl (cmnm5) or a 5-taurinomethyl (τm5) group onto wobble uridines of several tRNA species. The Escherichia coli MnmE binds guanosine-5'-triphosphate (GTP) and methylenetetrahydrofolate (CH2THF), while MnmG binds flavin adenine dinucleotide (FAD) and a reduced nicotinamide adenine dinucleotide (NADH). Together with glycine, MnmEG catalyzes the installation of cmnm5 in a reaction that also requires hydrolysis of GTP. In this letter, we investigated key steps of the MnmEG reaction using a combination of biochemical techniques. We show multiple lines of evidence supporting flavin-iminium FADH[N5═CH2]+ as a central intermediate in the MnmEG reaction. Using a synthetic FADH[N5═CD2]+ analogue, the intermediacy of the FAD in the transfer of the methylene group from CH2THF to the C5 position of U34 was unambiguously demonstrated. Further, MnmEG reactions containing the deuterated flavin-iminium intermediate and alternate nucleophiles such as taurine and ammonia also led to the formation of the anticipated U34-modified tRNAs, showing FAD[N5═CH2]+ as the universal intermediate for all MnmEG homologues. Additionally, an RNA-protein complex stable to urea-denaturing polyacrylamide gel electrophoresis was identified. Studies involving a series of nuclease (RNase T1) and protease (trypsin) digestions along with reverse transcription experiments suggest that the complex may be noncovalent. While the conserved MnmG cysteine C47 and C277 mutant variants were shown to reduce FAD, they were unable to promote the modified tRNA formation. Overall, this study provides critical insights into the biochemical mechanism underlying tRNA modification by the MnmEG.
Collapse
Affiliation(s)
- Praneeth Bommisetti
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
2
|
Bommisetti P, Young A, Bandarian V. Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification. J Biol Chem 2022; 298:102548. [PMID: 36181794 PMCID: PMC9626948 DOI: 10.1016/j.jbc.2022.102548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.
Collapse
Affiliation(s)
- Praneeth Bommisetti
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anthony Young
- Soliome Inc, 479 Jessie Street, San Francisco, CA 94103, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.
| |
Collapse
|
3
|
Mosquera-Rendón J, Cárdenas-Brito S, Pineda JD, Corredor M, Benítez-Páez A. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases. BMC Res Notes 2014; 7:440. [PMID: 25012753 PMCID: PMC4119055 DOI: 10.1186/1756-0500-7-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Benítez-Páez
- Bioinformatics Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología - CIDBIO, 111221 Bogotá, D,C, Colombia.
| |
Collapse
|
4
|
Moukadiri I, Garzón MJ, Björk GR, Armengod ME. The output of the tRNA modification pathways controlled by the Escherichia coli MnmEG and MnmC enzymes depends on the growth conditions and the tRNA species. Nucleic Acids Res 2013; 42:2602-23. [PMID: 24293650 PMCID: PMC3936742 DOI: 10.1093/nar/gkt1228] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli, the MnmEG complex modifies transfer RNAs (tRNAs) decoding NNA/NNG codons. MnmEG catalyzes two different modification reactions, which add an aminomethyl (nm) or carboxymethylaminomethyl (cmnm) group to position 5 of the anticodon wobble uridine using ammonium or glycine, respectively. In and , however, cmnm5 appears as the final modification, whereas in the remaining tRNAs, the MnmEG products are converted into 5-methylaminomethyl (mnm5) through the two-domain, bi-functional enzyme MnmC. MnmC(o) transforms cmnm5 into nm5, whereas MnmC(m) converts nm5 into mnm5, thus producing an atypical network of modification pathways. We investigate the activities and tRNA specificity of MnmEG and the MnmC domains, the ability of tRNAs to follow the ammonium or glycine pathway and the effect of mnmC mutations on growth. We demonstrate that the two MnmC domains function independently of each other and that and are substrates for MnmC(m), but not MnmC(o). Synthesis of mnm5s2U by MnmEG-MnmC in vivo avoids build-up of intermediates in . We also show that MnmEG can modify all the tRNAs via the ammonium pathway. Strikingly, the net output of the MnmEG pathways in vivo depends on growth conditions and tRNA species. Loss of any MnmC activity has a biological cost under specific conditions.
Collapse
Affiliation(s)
- Ismaïl Moukadiri
- Laboratory of RNA Modification and Mitochondrial Diseases, Príncipe Felipe Research Center, 46012-Valencia, Spain, Department of Molecular Biology, Umeå University, S90187, Sweden and Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U721), Spain
| | | | | | | |
Collapse
|
5
|
Benítez-Páez A, Villarroya M, Douthwaite S, Gabaldón T, Armengod ME. YibK is the 2'-O-methyltransferase TrmL that modifies the wobble nucleotide in Escherichia coli tRNA(Leu) isoacceptors. RNA (NEW YORK, N.Y.) 2010; 16:2131-43. [PMID: 20855540 PMCID: PMC2957053 DOI: 10.1261/rna.2245910] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/18/2010] [Indexed: 05/25/2023]
Abstract
Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the modifying enzymes have been identified, although a few notable exceptions include the 2'-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Here, we have used a comparative genomics approach to uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2'-O-methylation at position 34 in both tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Loss of YibK methylation reduces the efficiency of codon-wobble base interaction, as demonstrated in an amber suppressor supP system. Inactivation of yibK had no detectable effect on steady-state growth rate, although a distinct disadvantage was noted in multiple-round, mixed-population growth experiments, suggesting that the ability to recover from the stationary phase was impaired. Methylation is restored in vivo by complementing with a recombinant copy of yibK. Despite being one of the smallest characterized α/β knot proteins, YibK independently catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2'-OH of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N⁶-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | | | | | | | | |
Collapse
|
6
|
Bujnicki JM, Oudjama Y, Roovers M, Owczarek S, Caillet J, Droogmans L. Identification of a bifunctional enzyme MnmC involved in the biosynthesis of a hypermodified uridine in the wobble position of tRNA. RNA (NEW YORK, N.Y.) 2004; 10:1236-42. [PMID: 15247431 PMCID: PMC1370613 DOI: 10.1261/rna.7470904] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The gene encoding the bifunctional enzyme MnmC that catalyzes the two last steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U) in tRNA has been previously mapped at about 50 min on the Escherichia coli K12 chromosome, but to date the identity of the corresponding enzyme has not been correlated with any of the known open reading frames (ORFs). Using the protein fold-recognition approach, we predicted that the 74-kDa product of the yfcK ORF located at 52.6 min and annotated as "putative peptidase" comprises a methyltransferase domain and a FAD-dependent oxidoreductase domain. We have cloned, expressed, and purified the YfcK protein and demonstrated that it catalyzes the formation of mnm5s2U in tRNA. Thus, we suggest to rename YfcK as MnmC.
Collapse
Affiliation(s)
- Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Brierley I, Meredith MR, Bloys AJ, Hagervall TG. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J Mol Biol 1997; 270:360-73. [PMID: 9237903 PMCID: PMC7126968 DOI: 10.1006/jmbi.1997.1134] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1997] [Revised: 05/08/1997] [Accepted: 05/09/1997] [Indexed: 02/04/2023]
Abstract
Eukaryotic ribosomal frameshift signals generally contain two elements, a heptanucleotide slippery sequence (XXXYYYN) and an RNA secondary structure, often an RNA pseudoknot, located downstream. Frameshifting takes place at the slippery sequence by simultaneous slippage of two ribosome-bound tRNAs. All of the tRNAs that are predicted to decode frameshift sites in the ribosomal A-site (XXXYYYN) possess a hypermodified base in the anticodon-loop and it is conceivable that these modifications play a role in the frameshift process. To test this, we expressed slippery sequence variants of the coronavirus IBV frameshift signal in strains of Escherichia coli unable to modify fully either tRNA(Lys) or tRNA(Asn). At the slippery sequences UUUAAAC and UUUAAAU (underlined codon decoded by tRNA(Asn), anticodon 5' QUU 3'), frameshifting was very inefficient (2 to 3%) and in strains deficient in the biosynthesis of Q base, was increased (AAU) or decreased (AAC) only two-fold. In E. coli, therefore, hypomodification of tRNA(Asn) had little effect on frameshifting. The situation with the efficient slippery sequences UUUAAAA (15%) and UUUAAAG (40%) (underlined codon decoded by tRNA(Lys), anticodon 5' mnm5s2UUU 3') was more complex, since the wobble base of tRNA(Lys) is modified at two positions. Of four available mutants, only trmE (s2UUU) had a marked influence on frameshifting, increasing the efficiency of the process at the slippery sequence UUUAAAA. No effect on frameshifting was seen in trmC1 (cmnm5s2UUU) or trmC2 (nm5s2UUU) strains and only a very small reduction (at UUUAAAG) was observed in an asuE (mnm5UUU) strain. The slipperiness of tRNA(Lys), therefore, cannot be ascribed to a single modification site on the base. However, the data support a role for the amino group of the mnm5 substitution in shaping the anticodon structure. Whether these conclusions can be extended to eukaryotic translation systems is uncertain. Although E. coli ribosomes changed frame at the IBV signal (UUUAAAG) with an efficiency similar to that measured in reticulocyte lysates (40%), there were important qualitative differences. Frameshifting of prokaryotic ribosomes was pseudoknot-independent (although secondary structure dependent) and appeared to require slippage of only a single tRNA.
Collapse
Key Words
- ribosomal frameshifting
- trna anticodon modification
- rna pseudoknot
- lysyl-trna
- q base
- rsv, rous sarcoma virus
- orf, open reading frame
- q, queuosine
- y, wyebutoxine
- hiv, human immunodeficiency virus
- htlv, human t-cell leukaemia virus
- blv, bovine leukaemia virus
- ibv, infectious bronchitis virus
- rrl, rabbit reticulocyte lysate
- iptg, isopropyl-β, d-thiogalactopyranoside
- tgt, trna guanine transglycosylase
- mmtv, mouse mammary tumour virus
- pfu, plaque-forming units
Collapse
Affiliation(s)
- I Brierley
- Department of Pathology, University of Cambridge, UK
| | | | | | | |
Collapse
|
9
|
Wikström PM, Byström AS, Björk GR. Non-autogenous control of ribosomal protein synthesis from the trmD operon in Escherichia coli. J Mol Biol 1988; 203:141-52. [PMID: 2460631 DOI: 10.1016/0022-2836(88)90098-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The trmD operon of Escherichia coli encodes the ribosomal proteins S16 and L19, the tRNA(m1G37)methyltransferase and a 21,000 Mr protein of unknown function. Here we demonstrate that, in contrast to the expression of other ribosomal protein operons, the amount of trmD operon mRNA and the rate of synthesis of the proteins encoded by the operon respond to increased gene dosage. The steady-state level of the mRNA was about 18 times higher, and the relative rate of synthesis of the ribosomal proteins S16 and L19, the tRNA(m1G37)methyltransferase and the 21,000 Mr protein was 15, 9, 25 and 23 times higher, respectively, in plasmid-containing cells than in plasmid-free cells. Overproduced tRNA(m1G37)methyltransferase and 21,000 Mr protein were as stable as E. coli total protein, whereas the two ribosomal proteins were degraded to a large extent. The steady-state amount of S16 and L19 in the plasmid-containing cells exceeded that in plasmid-free cells by threefold and twofold, respectively. No significant effect on the synthesis of the trmD operon proteins from the chromosomally located genes was observed when parts of the operon were expressed on different plasmids. Taken together, these results suggest that the expression of the trmD operon is not subject to transcriptional or translational feedback regulation, and demonstrate that not all ribosomal protein operons are regulated in the same manner. We propose that ribosomal protein operons that do not encode proteins that bind directly to rRNA are not under autogenous control. Metabolic regulation at the transcriptional level and protein degradation are plausible mechanisms for the control of expression of such operons.
Collapse
Affiliation(s)
- P M Wikström
- Department of Microbiology, University of Umeå, Sweden
| | | | | |
Collapse
|
10
|
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 1988; 52:354-74. [PMID: 3054467 PMCID: PMC373150 DOI: 10.1128/mr.52.3.354-374.1988] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem J 1988; 251:313-22. [PMID: 2969724 PMCID: PMC1149004 DOI: 10.1042/bj2510313] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The enzyme chorismate synthase was purified in milligram quantities from an overproducing strain of Escherichia coli. The amino acid sequence was deduced from the nucleotide sequence of the aroC gene and confirmed by determining the N-terminal amino acid sequence of the purified enzyme. The complete polypeptide chain consists of 357 amino acid residues and has a calculated subunit Mr of 38,183. Cross-linking and gel-filtration experiments show that the enzyme is tetrameric. An improved purification of chorismate synthase from Neurospora crassa is also described. Cross-linking and gel-filtration experiments on the N. crassa enzyme show that it is also tetrameric with a subunit Mr of 50,000. It is proposed that the subunits of the N. crassa enzyme are larger because they contain a diaphorase domain that is absent from the E. coli enzyme.
Collapse
|
12
|
Hagervall TG, Edmonds CG, McCloskey JA, Björk GR. Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47440-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Hagervall TG, Björk GR. Undermodification in the first position of the anticodon of supG-tRNA reduces translational efficiency. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:194-200. [PMID: 6387394 DOI: 10.1007/bf00328050] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two mutants of Escherichia coli, trmC1 and trmC2, which are both defective in the synthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U) were utilized to study the function of this complex modified nucleoside. Transfer RNAs specific for glutamine, glutamic acid and lysine as well as a specific ochre suppressor derived from lysine tRNA (tRNAUAAlys encoded by the supG allele), contain this modified nucleoside at position 34 (the wobble position). It was found that two different undermodified derivatives of mnm5s2U were present in the two trmC mutants, which suggests that the two mutations affect two different enzymatic activities. Using the lacI-Z fusion system (Miller and Albertini 1983), we found that the efficiency of supG-mediated suppression was reduced to 30%-90% of the wild-type value in the trmC mutants. The modification-deficient supG-tRNA in the mutants showed a higher sensitivity to codon context than the normal tRNAUAAlys.
Collapse
|