1
|
Kotov AA, Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV. Drosophila as a Model System for Studying of the Evolution and Functional Specialization of the Y Chromosome. Int J Mol Sci 2022; 23:4184. [PMID: 35457001 PMCID: PMC9031259 DOI: 10.3390/ijms23084184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila V. Olenina
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», 123182 Moscow, Russia; (A.A.K.); (S.S.B.); (V.E.A.); (A.S.S.)
| |
Collapse
|
2
|
Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet 2019; 15:e1008028. [PMID: 31071079 PMCID: PMC6508621 DOI: 10.1371/journal.pgen.1008028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation. Introns are non-coding elements of eukaryotic genes, often containing important regulatory sequences. Curiously, some genes contain introns so large that more than 99% of the gene locus is non-coding. One of the best-studied large genes, Dystrophin, a causative gene for Duchenne Muscular Dystrophy, spans 2.2Mb, only 11kb of which is coding. This phenomenon, ‘intron gigantism’, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism using Drosophila spermatogenic genes as a model system. We show that the gigantic introns of these genes are transcribed in line with the exons, likely as a single transcript. We identify two RNA-binding proteins that specifically localize to the site of transcription and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.
Collapse
|
3
|
Reugels AM, Kurek R, Lammermann U, Bünemann H. Mega-introns in the dynein gene DhDhc7(Y) on the heterochromatic Y chromosome give rise to the giant threads loops in primary spermatocytes of Drosophila hydei. Genetics 2000; 154:759-69. [PMID: 10655227 PMCID: PMC1460963 DOI: 10.1093/genetics/154.2.759] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterochromatic Y chromosomes of several Drosophila species harbor a small number of male fertility genes (fertility factors) with several unusual features. Expression of their megabase-sized loci is restricted to primary spermatocytes and correlates with the unfolding of species-specific lampbrush loop-like structures resulting from huge transcripts mainly derived from clusters of loop-specific Y chromosomal satellites. Otherwise, there is evidence from genetic mapping and biochemical experiments that at least two of these loops, Threads in Drosophila hydei and kl-5 in D. melanogaster, colocalize with the genes for the axonemal dynein beta heavy chain proteins DhDhc7(Y) and Dhc-Yh3, respectively. Here, we make use of particular Threads mutants with megabase-sized deletions for direct mapping of DhDhc7(Y)-specific exons among the large clusters of satellite DNA within the 5.1-Mb Threads transcription unit. PCR experiments with exon-specific primer pairs, in combination with hybridization experiments with exon- and satellite-specific probes on filters with large PFGE-generated DNA fragments, offer a simple solution for the long-lasting paradox between megabase-sized loops and protein-encoding transcription units; the lampbrush loops Threads and the DhDhc7(Y) gene are one and the same transcription unit, and the giant size of the DhDhc7(Y) gene as well as its appearance as a giant lampbrush loop are merely the result of transcription of huge clusters of satellite DNA within some of its 20 introns.
Collapse
Affiliation(s)
- A M Reugels
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
4
|
Kurek R, Reugels AM, Glätzer KH, Bünemann H. The Y chromosomal fertility factor Threads in Drosophila hydei harbors a functional gene encoding an axonemal dynein beta heavy chain protein. Genetics 1998; 149:1363-76. [PMID: 9649526 PMCID: PMC1460245 DOI: 10.1093/genetics/149.3.1363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand the contradiction between megabase-sized lampbrush loops and putative protein encoding genes both associated with the loci of Y chromosomal fertility genes of Drosophila on the molecular level, we used PCR-mediated cloning to identify and isolate the cDNA sequence of the Y chromosomal Drosophila hydei gene DhDhc7(Y). Alignment of the sequences of the putative protein DhDhc7(Y) and the outer arm dynein beta heavy chain protein DYH2 of Tripneustes gratilla shows homology over the entire length of the protein chains. Therefore the proteins can be assumed to fulfill orthologous functions within the sperm tail axonemes of both species. Functional dynein beta heavy chain molecules, however, are necessary for the assembly and attachment of outer dynein arms within the sperm tail axoneme. Localization of DhDhc7(Y) to the fertility factor Threads, comprising at least 5.1 Mb of transcriptionally active repetitive DNA, results from an infertile Threads- mutant where large clusters of Threads specifically transcribed satellites and parts of DhDhc7(Y) encoding sequences are missing simultaneously. Consequently, the complete lack of the outer dynein arms in Threads- males most probably causes sperm immotility and hence infertility of the fly. Moreover, preliminary sequence analysis and several other features support the hypothesis that DhDhc7(Y) on the lampbrush loops Threads in D. hydei and Dhc-Yh3 on the lampbrush loops kl-5 in Drosophila melanogaster on the heterochromatic Y chromosome of both species might indeed code for orthologous dynein beta heavy chain proteins.
Collapse
Affiliation(s)
- R Kurek
- Dipartimento di Genetica e Biologia Molecolare, Universita di Roma 'La Sapienza,' I-00185 Roma, Italia
| | | | | | | |
Collapse
|
5
|
Kurek R, Trapitz P, Bünemann H. Strukturdifferenzierungen in Y-chromosom von Drosophila hydei: the unique morphology of the Y chromosomal lampbrush loops Threads results from 'coaxial shells' formed by different satellite-specific subregions within megabase-sized transcripts. Chromosome Res 1996; 4:87-102. [PMID: 8785614 DOI: 10.1007/bf02259701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The results of pulsed-field gel electrophoresis (PFGE) analysis and two-colour transcript fluorescence in situ hybridization (FISH) for the three Threads-specific DNA satellites YLII, YLI and rally are in support of long-range clustering of these sequence families within the subterminal region on the long arm of the Y chromosome of Drosophila hydei. On the basis of the linear arrangement of at least four extended clusters of satellite-specific sequences, the loop morphology of wild-type and several mutant Threads can be explained by assumption of a single Threads-specific transcription unit comprising about 5.1 Mb of repetitive DNA located between the Pseudonucleolus and the Nucleolus organizer. Transcription is unidirectional from the Pseudonucleolus towards the terminally located Nucleolus organizer. Transcripts most likely start in front of or within the 3.2 Mb region of YLII-related sequences, pass through subsequent blocks of 1.2 and 0.3 Mb of YLI- and rally-related sequences, respectively, and cease within the region of a smaller block of YLI-related repeats. The megabase-sized transcripts remain physically linked to the DNA axis and their extended satellite-specific regions form coaxial clouds or shells around the central DNA axis. In this way each cluster of earlier-transcribed sequences generates a cloud or shell on top of the later-transcribed ones. According to this model of 'satellite-specific coaxial shells' the tube-like morphology and other peculiarities of the Y chromosomal lampbrush loops Threads can be explained as a result of satellite-specific RNA superstructures and/or formation of extended ribonucleoprotein (RNP) complexes between clusters of satellite-specific transcripts and specific proteins. On the basis of this model the specific morphology of several Threads mutants can be interpreted as the result of large interstitial or terminal deletions that alter the total length of the Threads-specific transcription unit without exerting other major effects on principal features of the transcription process along the Threads.
Collapse
Affiliation(s)
- R Kurek
- Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
6
|
Hochstenbach R, Harhangi H, Schouren K, Hennig W. Degenerating gypsy retrotransposons in a male fertility gene on the Y chromosome of Drosophila hydei. J Mol Evol 1994; 39:452-65. [PMID: 7807535 DOI: 10.1007/bf00173414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the evolution of the Y chromosome of Drosophila hydei, retrotransposons became incorporated into the lampbrush loop pairs formed by several of the male fertility genes on this chromosome. Although insertions of retrotransposons are involved in many spontaneous mutations, they do not affect the functions of these genes. We have sequenced gypsy elements that are expressed as constituents of male fertility gene Q in the lampbrush loop pair Nooses. We find that these gypsy elements are all truncated and specifically lost those sequences that may interfere with the continuity of lampbrush loop transcription. Only defective coding regions are found within the loop. Gypsy is not transcribed in loops of many other Drosophila species harboring the family. These results suggest that any contribution of gypsy to the function of male fertility gene Q does not depend on a conserved DNA sequence.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Hochstenbach R, Brand R, Hennig W. Transcription of repetitive DNA sequences in the lampbrush loop pair Nooses formed by sterile alleles of fertility gene Q on the Y chromosome of Drosophila hydei. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:653-60. [PMID: 7969035 DOI: 10.1007/bf00282756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Y chromosomal lampbrush loop-forming male fertility genes of Drosophila consist mainly of repetitive DNA sequences that do not code for proteins. We investigated whether differences in the transcription of these sequences can be detected in male-sterile alleles of male fertility gene Q, which forms the loop pair Nooses. The loop consists, for approximately two-thirds, of repeats of the Y-specific ay1 family of repetitive DNA sequences. Of the remaining one-third, at least one-half is represented by defective retrotransposons of the gypsy family. Both sequence types are interspersed throughout the loop. Using both ay1 and gypsy sequences as probes for transcript in situ hybridization, we show that, at the level of the light microscope, transcription of neither sequence is detectably affected in the loops formed by a male-sterile allele of gene Q. We conclude that the transcription of ay1 and gypsy is required, but not sufficient for the function of gene Q.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
8
|
Burgtorf C, Bünemann H. Representative and efficient cloning of satellite DNAs based on PFGE pre-fractionation of restriction digests of genomic DNA. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1994; 28:301-12. [PMID: 7963251 DOI: 10.1016/0165-022x(94)90006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using DNA from Drosophila hydei KUN-DH-33 cells we describe an efficient method for selective and representative cloning of complex mixtures of satellite DNAs from eukaryotic genomes. Effective separation of satellite DNA from the bulk of all other sequences it obtained by fractionation of high molecular weight DNA by PFGE after treating it with '6 bp' restriction enzymes. Since extended clusters of tandemly arranged, so called simple sequence, repeats are inert to cleavage by most '6 bp' restriction enzymes the DNA fraction recovered from the gel region > 50 kb is mainly a mixture of satellites. Efficient and representative cloning of this DNA is performed by sonication to an average size of 50-500 bp and ligation of the blunt ended DNA fragments into the Bluescript vector pBS.
Collapse
Affiliation(s)
- C Burgtorf
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, cermany
| | | |
Collapse
|
9
|
Hochstenbach R, Knops M, Hennig W. Discrimination of related transcribed and non-transcribed repetitive DNA sequences from the Y chromosomes of Drosophila hydei and Drosophila eohydei. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:54-62. [PMID: 8190071 DOI: 10.1007/bf00283876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The short arm of the Y chromosome of Drosophila hydei carries a single male fertility gene, gene Q, which forms the lampbrush loop pair Nooses. Conflicting observations have been reported concerning the identity of the repetitive DNA sequences that are transcribed in this loop pair. It has been claimed by other investigators that the loop transcripts contain repeats of two distinct, but related families of Y-specific repetitive DNA sequences, ay1 and YsI. We reinvestigated this issue, using as probes single ay1 and YsI repeats which, under stringent conditions, hybridize only to members of their own family. Under non-stringent conditions, both repeats hybridize in situ to Nooses transcripts. However, if hybridization conditions are stringent, only the ay1 probe hybridizes to loop transcripts. Hybridizations to Northern blots of testis RNA confirm these results. Further, YsI repeats are not found the closely related species D. eohydei. We conclude that the YsI repeats are not relevant for the function of fertility gene Q.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
10
|
Hochstenbach R, Pötgens A, Meijer H, Dijkhof R, Knops M, Schouren K, Hennig W. Partial reconstruction of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei. Chromosoma 1993; 102:526-45. [PMID: 8243165 DOI: 10.1007/bf00368346] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present the analysis of genomic DNA fragments that were isolated as potential segments of the lampbrush loop pair Nooses on the short arm of the Y chromosome of Drosophila hydei. More than 300 kb of DNA were recovered in BamHI lambda and cosmid clone groups. This DNA is composed of the Y-specific ay1 family of repetitive DNA sequences, and of other repetitive DNA sequences, which at least in part are also located elsewhere in the genome (Y-associated sequences). Two additional classes of DNA fragments were obtained from an EcoRI library. One of them consists of ay1 repeats without apparent interspersion, including a total of more than 300 kb of DNA. The other is composed of tandemly repeated YsI sequences, a Y-specific sequence derived from ay1. This class includes more than 400 kb of DNA, which is also not interspersed by other sequences. Our results show that only the ay1 repeats interspersed by Y-associated DNA sequences can represent parts of the 260 kb transcription unit forming the lampbrush loop, whereas the ay1 and YsI repeats without interspersion form separate and nontranscribed clusters of repetitive DNA.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Hochstenbach R, Wilbrink M, Suijkerbuijk R, Hennig W. Localization of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei by fluorescence in situ hybridization. Chromosoma 1993; 102:546-52. [PMID: 8243166 DOI: 10.1007/bf00368347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used fluorescence in situ hybridization to map the positions of the different repetitive DNA sequences from the region forming the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei. This region harbours a megabase cluster of tandemly organized repeats of the Y-specific ay1 family and a megabase cluster of tandem repeats of the related Y-specific YsI family. In addition, ay1 repeats also occur in short blocks that are interspersed by other repetitive DNA sequences that we call Y-associated, since they have additional copies on other chromosomes. Using specific probes for ay1, YsI and Y-associated DNA sequences, we show that there is one large proximal cluster of YsI repeats and one, more distally located, large cluster of ay1 repeats. The Y-chromosomal copies of the Y-associated sequences are located in the most distal part of the ay1 cluster. This is consistent with the juxtaposition of ay1 and Y-associated sequences in more than 300 kb of cloned genomic DNA. Since both ay1 and Y-associated sequences have been shown to be transcribed in the Nooses, the lampbrush loop is formed in a distal region of the short arm of the Y chromosome, adjacent to the terminally located nucleolus organizer region. The clusters of homogeneous ay1 and YsI repeats are of no functional significance for the formation of the lampbrush loop.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Trapitz P, Bünemann H. Preparation of high molecular weight DNA from Drosophila adults for PFGE analysis. Trends Genet 1992; 8:371-2. [PMID: 1440871 DOI: 10.1016/0168-9525(92)90286-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Trapitz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, FRG
| | | |
Collapse
|
13
|
Trapitz P, Glätzer KH, Bünemann H. Towards a physical map of the fertility genes on the heterochromatic Y chromosome of Drosophila hydei: families of repetitive sequences transcribed on the lampbrush loops Nooses and Threads are organized in extended clusters of several hundred kilobases. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:221-34. [PMID: 1465096 DOI: 10.1007/bf00279364] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The understanding of structure and function of the so-called fertility genes of Drosophila is very limited due to their unusual size--several megabases--and their location on the heterochromatic Y chromosome. Since mapping of these genes has mainly been done by classical cytogenetic analyses using a small number of cytologically visible lampbrush loops as the sole markers for particular fertility genes, the resolution of the genetic map of the Y chromosome is restricted to 3-5 Mb. Here we demonstrate that a substantially finer subdivision of the megabase-sized fertility genes in the subtelomeric regions of the Y chromosome of Drosophila hydei can be achieved by a combination of digestion with restriction enzymes having 6 bp recognition sequences, and pulsed field gel electrophoresis. The physical subdivision is based upon large conserved fragments of repetitive DNA in the size range from 50 up to 1600 kb and refers to the long-range organization of several families of repetitive DNA involved in Y chromosomal transcription processes in primary spermatocytes. We conclude from our results that at least five different families of repetitive DNA specifically transcribed on the lampbrush loops nooses and threads are organized as extended clusters of several hundred kb, essentially free of interspersed non-repetitive sequences.
Collapse
Affiliation(s)
- P Trapitz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, FRG
| | | | | |
Collapse
|
14
|
Anleitner JE, Haymer DS. Y enriched and Y specific DNA sequences from the genome of the Mediterranean fruit fly, Ceratitis capitata. Chromosoma 1992; 101:271-8. [PMID: 1533581 DOI: 10.1007/bf00346005] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA sequences that are enriched or specific to the genome of the male medfly, Ceratitis capitata, have been isolated using a differential hybridization approach. Twelve phage clones from a genomic library have been identified that consistently display more intense hybridization with a genomic DNA probe from males as opposed to one from females. Southern DNA blot analysis reveals that these recombinant clones contain at least one EcoRI fragment that is either specific to the male genome, or more highly represented in it, as compared with the female genome. These EcoRI fragments, when used as probes, all generate a similar pattern of intense multiple bands in genomic DNA of males. This suggests the presence of repetitive sequences that are at least partially homologous in these regions of the genome that are specific to or enriched in males. In situ hybridization to mitotic chromosomes confirms a Y chromosomal origin for the male specific repetitive sequences. Data on the genomic organization, representation and evolutionary conservation of these sequences that are specific to or enriched in males are presented. Studies of the genomic organization and representation of flanking sequences that are not male specific are presented as well.
Collapse
Affiliation(s)
- J E Anleitner
- Department of Genetics and Molecular Biology, University of Hawaii-Manoa, Honolulu 96822
| | | |
Collapse
|
15
|
Hackstein JH, Glätzer KH, Hulsebos TJ. Genetic and cytogenetic analysis of the "Th-Ps" region of the Y chromosome of Drosophila hydei: evidence for dual functions of the lampbrush loop-forming fertility genes? MOLECULAR & GENERAL GENETICS : MGG 1991; 227:293-305. [PMID: 2062310 DOI: 10.1007/bf00259683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two competing hypotheses have been proposed for the function of the Y chromosomal fertility factors in Drosophila, which form giant lampbrush loops during the primary spermatocyte stage. The first hypothesis suggests a conventional coding function, the second proposes an unconventional gene function mediated through protein binding by nascent transcripts. Therefore, we studied the genetics and cytogenetics of the two Y chromosomal fertility genes A and C of Drosophila hydei (which form the lampbrush loops threads and pseudonucleolus) in order to test the validity of these different hypotheses. Both lampbrush loops bind specific proteins, which are recognized by different antisera. Absence of either of the lampbrush loops does not interfere with the synthesis of the antigens but completely prevents the binding of the particular antigen to other lampbrush loops. Absence of the loops also does not interfere with the postmeiotic presence and localization of the particular antigen. Deletion (or inactivation) of either of the lampbrush loops threads or pseudonucleolus causes sterility of the male flies as do other male-sterile alleles of both fertility genes, which do not affect the morphology of the lampbrush loops. The phenotypic effects of these mutations on sperm morphogenesis are identical for all various male-sterile alleles of each of the fertility genes A and C, regardless of whether a particular allele leaves the loop intact, modifies that loop, or deletes (or inactivates) the loop completely. Finally, the isolation of fertile Y chromosomal mutations which modify the morphology of the lampbrush loops demonstrates that it is possible to uncouple loop morphology and genetic function. These findings do not support the hypothesis that the binding of proteins to a lampbrush loop has a substantial impact on spermiogenesis.
Collapse
Affiliation(s)
- J H Hackstein
- Department of Molecular and Developmental Genetics, Catholic University of Nijmegen, Faculty of Science, The Netherlands
| | | | | |
Collapse
|
16
|
von Kries JP, Buhrmester H, Strätling WH. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell 1991; 64:123-35. [PMID: 1846084 DOI: 10.1016/0092-8674(91)90214-j] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops.
Collapse
Affiliation(s)
- J P von Kries
- Physiologisch-Chemisches Institut, Universitäts-Krankenhaus Eppendorf, Hamburg, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Huijser P, Beckers L, Top B, Hermans M, Sinke R, Hennig W. Poly[d(C-A)].poly[d(G-T)] is highly transcribed in the testes of Drosophila hydei. Chromosoma 1990; 100:48-55. [PMID: 2129287 DOI: 10.1007/bf00337602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microdissection of the lampbrush loops "threads" and "pseudonucleolus" of Y chromosomes from primary spermatocytes of Drosophila hydei and subsequent microcloning of the DNA yielded several recombinant DNA clones which cross-hybridized in screening the different clone banks. By DNA sequencing we found that the inserts of these cross-hybridizing clones contain blocks of poly[d(C-A].poly[d(G-T)]. Testis RNA contains a large fraction of transcripts with this simple repeated nucleotide sequence. With the aid of transcript in situ hybridization we discovered that the "cones" and "pseudonucleolus" lampbrush loops are the primary sites of transcription of poly[d(C-A)].poly[d(G-T)] in spermatocytes. In addition, we found a strand-specific transcription of (CA/GT)n. In both the "cones" and "pseudonucleolus" the (CA)n strand is transcribed, while in the "pseudonucleolus" (GT)n is also transcribed. Labelled (CA)n probes also react with the protein bodies in spermatid nuclei. These observations are discussed in the context of possible functions of (CA/GT)n transcripts in spermatogenesis.
Collapse
Affiliation(s)
- P Huijser
- Department of Molecular and Developmental Genetics, University of Nijmegen, Faculty of Sciences, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
von Kries JP, Phi-Van L, Diekmann S, Strätling WH. A non-curved chicken lysozyme 5' matrix attachment site is 3' followed by a strongly curved DNA sequence. Nucleic Acids Res 1990; 18:3881-5. [PMID: 2374712 PMCID: PMC331089 DOI: 10.1093/nar/18.13.3881] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Matrix attachment regions (MARs) partition the genome into functional and structural loop-domains. Here, we determined the relative matrix affinity of cloned fragments of the chicken lysozyme 5' MAR. We show that this region contains a non-curved high-affinity binding site, which is 3' followed by a strongly curved DNA sequence that exhibits weak matrix binding. DNA curvature is not a physical property required for strong matrix binding. Possible biological functions of this sequence arrangement, particularly of the strongly curved DNA, are discussed.
Collapse
Affiliation(s)
- J P von Kries
- Institut für Physiologische Chemie, Universitäts-Krankenhaus Eppendorf, Hamburg, FRG
| | | | | | | |
Collapse
|
19
|
Vogt P. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Hum Genet 1990; 84:301-36. [PMID: 2407640 DOI: 10.1007/bf00196228] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review is based on a thorough description of the structure and sequence organization of tandemly organized repetitive DNA sequence families in the human genome; it is aimed at revealing the locus-specific sequence organization of tandemly repetitive sequence structures as a highly conserved DNA sequence code. These repetitive so-called "super-structures" or "higher-order" structures are able to attract specific nuclear proteins. I shall define this code therefore as a "chromatin folding code". Since locus-specific superstructures of tandemly repetitive sequence units are present not only in the chromosome centromere or telomere region but also on the arms of the chromosomes, I assume that their chromatin folding code may contribute to, or even organize, the folding pathway of the chromatin chain in the nucleus. The "chromatin folding code" is based on its specific "chromatin code", which describes the sequence dependence of the helical pathway of the DNA primary sequence (i.e., secondary structure) entrapping the histone octamers in preferential positions. There is no periodicity in the distribution of the nucleosomes along the DNA chain. The folding pathway of the nucleosomal chromatin chain is however still flexible and determined by e.g., the length of the DNA chain between the nucleosomes. The fixation and stabilization of the chromatin chain in the space of the nucleus (i.e., its "functional state") may be mediated by additionally unique DNA protein interactions that are dictated by the "chromatin folding code". The unique DNA-protein interactions around the centromeres of human chromosomes are revealed for example by their "C-banding". I wish to stress that it is not my aim to relate each block of repetitive DNA sequences to a specific "chromatin folding code", but I shall demonstrate that there is an inherent potential for tandem repeated sequence units to develop a locus-specific repetitive higher order structure; this potential may create a specific chromatin folding code whenever a selection force exists at the position of this repetitive DNA structure in the genome.
Collapse
Affiliation(s)
- P Vogt
- Institut für Humangenetik und Anthropologie der Universität, Heidelberg, Federal Republic of Germany
| |
Collapse
|
20
|
Trapitz P, Wlaschek M, Bünemann H. Structure and function of Y chromosomal DNA. II. Analysis of lampbrush loop associated transcripts in nuclei of primary spermatocytes of Drosophila hydei by in situ hybridization using asymmetric RNA probes of four different families of repetitive DNA. Chromosoma 1988; 96:159-70. [PMID: 2450723 DOI: 10.1007/bf00331048] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
pSP64/65 subclones of four different families of repetitive sequences on the Y chromosome of Drosophila hydei were used for in vitro synthesis of labelled RNA. Pairs of RNA probes of opposite strand polarity were employed to analyse RNAs transcribed on, or associated with, various Y chromosomal lampbrush loops in nuclei of primary spermatocytes of D. hydei. The results of RNA filter analysis and in situ hybridization experiments can be generalized as follows: (1) Y-specific transcripts are heterogeneous in length and are synthesized on lampbrush loops. (2) Transcription of tandemly repeated sequences is usually strand specific. (3) Members of the same sequence family can be found in transcripts from different lampbrush loops. (4) Transcripts not coded by the Y chromosome are accumulated on different subregions of Y chromosomal lampbrush loops.
Collapse
Affiliation(s)
- P Trapitz
- Institut für Genetik der Universität, Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|