Trzcinska-Danielewicz J, Fronk J. SURVEY AND SUMMARY: exon-intron organization of genes in the slime mold Physarum polycephalum.
Nucleic Acids Res 2000;
28:3411-6. [PMID:
10982858 PMCID:
PMC110748 DOI:
10.1093/nar/28.18.3411]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon-intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon-intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon-intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3'-ends.
Collapse