1
|
Denyer R, Boyd LA. Movement Strategy Moderates the Effect of Spatially Congruent Cues on the Stability of Rhythmic Bimanual Finger Movements. J Cogn Neurosci 2025; 37:582-601. [PMID: 39499537 DOI: 10.1162/jocn_a_02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Spatially congruent cues increase the speed of bimanual reach decisions compared with abstract symbolic cues, particularly for asymmetric reaches. Asymmetric rhythmic bimanual movements are less stable than symmetric rhythmic movements, but it is not well understood if spatially congruent cues similarly increase the stability of asymmetric rhythmic bimanual movements. To address this question, in Experiment 1, participants performed symmetric and asymmetric bimanual rhythmic finger tapping movements at different movement frequencies in time with flickering spatially congruent and abstract symbolic stimuli. As expected, symmetric movements were more stable. Spatially congruent cues similarly increased the stability of symmetric and asymmetric movements compared with abstract symbolic cues. The benefits of spatial congruence and movement symmetry were restricted to high movement frequencies (>2 Hz). To better understand if the emergence of these effects at high movement frequencies was driven by a change in movement strategy, in Experiment 2, video of the hands was concurrently recorded during task performance. Markerless motion tracking software revealed that participants switched from discontinuous to continuous movement strategies with increasing movement frequency. Because discontinuous and continuous movements are thought to be controlled by distinct neurocognitive systems, this might explain why the beneficial effects of spatial congruence and response symmetry emerged only at high movement frequencies. Overall, results from the current study indicate that the perceptual quality of the stimulus use to cue movement frequency can have powerful effects on the stability of rhythmic bimanual movements, but that these effects may depend on whether discontinuous or continuous movement strategies are selected.
Collapse
|
2
|
Rosso M, Gener CN, Moens B, Maes PJ, Leman M. Perceptual coupling in human dyads: Kinematics does not affect interpersonal synchronization. Heliyon 2024; 10:e33831. [PMID: 39027589 PMCID: PMC11255578 DOI: 10.1016/j.heliyon.2024.e33831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The minimal, essential condition for individuals to interact is that they exchange information via at least one sensory channel. Once informational coupling is established, it enables basic forms of coordinated behavior to spontaneously emerge from the interaction. Our previous study revealed different coordination dynamics in dyads engaged in a joint finger-tapping task based on visual versus auditory coupling. This observation led us to propose the 'modality-dependent hypothesis', which posits that coordination dynamics are influenced by the sensory modality mediating informational coupling. However, recognizing that different modalities have inherent differences in accessing spatiotemporal features of perceived movement, we formulated the alternative 'kinematic hypothesis'. This hypothesis posits that differences in dynamics would vanish given equivalent kinematic information across modalities. The study involved forty (N = 40) participants, grouped into twenty (N = 20) dyads, who engaged in a joint finger-tapping task. This task was conducted under varying conditions of visual and auditory coupling, with manipulations in the access to kinematic information, categorized as discrete and continuous. Contrary to our initial predictions, the results strongly supported the 'modality-dependent hypothesis'. We observed that visual and auditory coupling consistently yielded distinct attractor dynamics, regardless of the access to kinematic information. Furthermore, all conditions of auditory coupling resulted in higher levels of synchronization than their visual counterparts. These findings suggest that the differences in interpersonal synchronization are predominantly influenced by the sensory modality, rather than the continuity of kinematic information. Our study highlights the significance of sensorimotor interactions in interpersonal synchronization and addresses the potential of sonification strategies in supporting motor training and rehabilitation.
Collapse
Affiliation(s)
- Mattia Rosso
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Canan Nuran Gener
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Bart Moens
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Pieter-Jan Maes
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Marc Leman
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| |
Collapse
|
3
|
Honda K, Fujii S. Bimanual finger coordination in professional and amateur darbuka players. Exp Brain Res 2023; 241:2645-2654. [PMID: 37750874 PMCID: PMC10635936 DOI: 10.1007/s00221-023-06703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Professional hand percussionists who play the darbuka (a drum from the Middle East) show fast and stable bimanual finger coordination compared to amateur players. A cross-recurrence quantification analysis clarifies how stable bimanual coordination is achieved by dissociating stochastic noise and attractor strength in the dynamic system. This study employed a cross-recurrence quantification analysis to examine professional and amateur darbuka players' fast and stable bimanual finger coordination. Eight professional and eight amateur percussion players participated in the study and played a darbuka with their right and left ring fingers, alternating as fast as possible for 12 s. We then analyzed the finger position data and calculated the stochastic noise and attractor strength from the density and the longest diagonal line in the recurrence plot, respectively. We used linear mixed-effects models to test whether stochastic noise and attractor strength differed between professional and amateur players. The results indicate that professional darbuka players achieve fast and stable bimanual finger coordination by enhancing attractor strength rather than reducing stochastic noise in the dynamic system.
Collapse
Affiliation(s)
- Kazuaki Honda
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
- NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0124, Japan.
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
4
|
Kim JC. Exploring the dynamics of intentional sensorimotor desynchronization using phasing performance in music. Front Psychol 2023; 14:1207646. [PMID: 38022969 PMCID: PMC10653329 DOI: 10.3389/fpsyg.2023.1207646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Humans tend to synchronize spontaneously to rhythmic stimuli or with other humans, but they can also desynchronize intentionally in certain situations. In this study, we investigate the dynamics of intentional sensorimotor desynchronization using phasing performance in music as an experimental paradigm. Phasing is a compositional technique in modern music that requires musicians to desynchronize from each other in a controlled manner. A previous case study found systematic nonlinear trajectories in the phasing performance between two expert musicians, which were explained by coordination dynamics arising from the interaction between the intrinsic tendency of synchronization and the intention of desynchronization. A recent exploratory study further examined the dynamics of phasing performance using a simplified task of phasing against a metronome. Here we present a further analysis and modeling of the data from the exploratory study, focusing on the various types of phasing behavior found in non-expert participants. Participants were instructed to perform one phasing lap, and individual trials were classified as successful (1 lap), unsuccessful (> 1 laps), or incomplete (0 lap) based on the number of laps made. It was found that successful phasing required a gradual increment of relative phase and that different types of failure (unsuccessful vs. incomplete) were prevalent at slow vs. fast metronome tempi. The results are explained from a dynamical systems perspective, and a dynamical model of phasing performance is proposed which captures the interaction of intrinsic dynamics and intentional control in an adaptive-frequency oscillator coupled to a periodic external stimulus. It is shown that the model can replicate the multiple types of phasing behavior as well as the effect of tempo observed in the human experiment. This study provides further evidence that phasing performance is governed by the nonlinear dynamics of rhythmic coordination. It also demonstrates that the musical technique of phasing provides a unique experimental paradigm for investigating human rhythmic behavior.
Collapse
Affiliation(s)
- Ji Chul Kim
- Department of Psychological Sciences, Center for the Ecological Study of Perception and Action, Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
5
|
Katz HR, Hamlet CL. Mechanosensory Feedback in Lamprey Swimming Models and Applications in the Field of Spinal Cord Regeneration. Integr Comp Biol 2023; 63:464-473. [PMID: 37355775 DOI: 10.1093/icb/icad079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
The central pattern generator (CPG) in anguilliform swimming has served as a model for examining the neural basis of locomotion. This system has been particularly valuable for the development of mathematical models. As our biological understanding of the neural basis of locomotion has expanded, so too have these models. Recently, there have been significant advancements in our understanding of the critical role that mechanosensory feedback plays in robust locomotion. This work has led to a push in the field of mathematical modeling to incorporate mechanosensory feedback into CPG models. In this perspective piece, we review advances in the development of these models and discuss how newer complex models can support biological investigation. We highlight lamprey spinal cord regeneration as an area that can both inform these models and benefit from them.
Collapse
Affiliation(s)
- Hilary R Katz
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Christina L Hamlet
- Department of Mathematics, Bucknell University, Lewisburg, PA, 17837, USA
| |
Collapse
|
6
|
Honda K, Fujii S. Tapping Performance of Professional and Amateur Darbuka Players. Front Psychol 2022; 13:861821. [PMID: 35846721 PMCID: PMC9280333 DOI: 10.3389/fpsyg.2022.861821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Motor skills of professional musicians can be regarded as a model to investigate human skill acquisition after prolonged practice. Although rhythmic tapping skills of musicians such as drummers and pianists were investigated previously, the tapping performance of hand percussionists is still largely unknown. In this study, we investigated the tapping performance of professional and amateur darbuka players. Three tapping tasks were performed: single-, double-, and triple-finger tapping tasks. The participants were asked to tap as fast as possible for 12 s in the single-finger tapping task while they tapped as fast and alternate/even as possible in the double- and triple-finger tapping tasks. The tapping speed and variability of inter-tap interval (ITI) and tapping amplitude were assessed for each task. In the single-finger and triple-finger tapping tasks, there was no significant difference in the tapping speed between the professional and amateur darbuka players. In the double-finger tapping task, the tapping speed was significantly faster in the professional players than the amateur players. Interestingly, the professional players showed faster tapping speed in both familiar and unfamiliar patterns of finger coordination. The tapping speed of the double-finger tapping task was significantly correlated with the duration and the age of commencement of darbuka training. The professional players also showed less variability of ITI and tapping amplitude compared to the amateur players. These results suggest that prolonged practice of the hand percussion increases the performance stability and coordination speed of both familiar and unfamiliar patterns.
Collapse
Affiliation(s)
- Kazuaki Honda
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Japan
- *Correspondence: Kazuaki Honda,
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
7
|
Grossberg S. Toward Understanding the Brain Dynamics of Music: Learning and Conscious Performance of Lyrics and Melodies With Variable Rhythms and Beats. Front Syst Neurosci 2022; 16:766239. [PMID: 35465193 PMCID: PMC9028030 DOI: 10.3389/fnsys.2022.766239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
A neural network architecture models how humans learn and consciously perform musical lyrics and melodies with variable rhythms and beats, using brain design principles and mechanisms that evolved earlier than human musical capabilities, and that have explained and predicted many kinds of psychological and neurobiological data. One principle is called factorization of order and rhythm: Working memories store sequential information in a rate-invariant and speaker-invariant way to avoid using excessive memory and to support learning of language, spatial, and motor skills. Stored invariant representations can be flexibly performed in a rate-dependent and speaker-dependent way under volitional control. A canonical working memory design stores linguistic, spatial, motoric, and musical sequences, including sequences with repeated words in lyrics, or repeated pitches in songs. Stored sequences of individual word chunks and pitch chunks are categorized through learning into lyrics chunks and pitches chunks. Pitches chunks respond selectively to stored sequences of individual pitch chunks that categorize harmonics of each pitch, thereby supporting tonal music. Bottom-up and top-down learning between working memory and chunking networks dynamically stabilizes the memory of learned music. Songs are learned by associatively linking sequences of lyrics and pitches chunks. Performance begins when list chunks read word chunk and pitch chunk sequences into working memory. Learning and performance of regular rhythms exploits cortical modulation of beats that are generated in the basal ganglia. Arbitrary performance rhythms are learned by adaptive timing circuits in the cerebellum interacting with prefrontal cortex and basal ganglia. The same network design that controls walking, running, and finger tapping also generates beats and the urge to move with a beat.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Department of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Saito Y, Maezawa T, Kawahara JI. Beat Patterns Determine Inter-Hand Differences in Synchronization Error in a Bimanual Coordination Tapping Task. Iperception 2021; 12:20416695211053882. [PMID: 34876970 PMCID: PMC8645307 DOI: 10.1177/20416695211053882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
A previous study reported the unique finding that people tapping a beat pattern with the
right hand produce larger negative synchronization error than when tapping with the left
hand or other effectors, in contrast to previous studies that have shown that the hands
tap patterns simultaneously without any synchronization errors. We examined whether the
inter-hand difference in synchronization error occurred due to handedness or to a
specificity of the beat pattern employed in that study. Two experiments manipulated the
hand–beat assignments. A comparison between the identical beat to the pacing signal and a
beat with a longer interval excluded the handedness hypothesis and demonstrated that beat
patterns with relatively shorter intervals were tapped earlier (Experiment 1). These
synchronization errors were not local but occurred consistently throughout the beat
patterns. Experiment 2 excluded alternative explanations. These results indicate that the
apparent inconsistency in previous studies was due to the specificity of the beat
patterns, suggesting that a beat pattern with a relatively shorter interval between hands
is tapped earlier than beats with longer intervals. Our finding that the bimanual tapping
of different beat patterns produced different synchronization errors suggests that the
notion of a central timing system may need to be revised.
Collapse
Affiliation(s)
- Yuka Saito
- Department of Psychology, Hokkaido University, Sapporo, Japan
| | - Tomoki Maezawa
- Department of Psychology, Hokkaido University, Sapporo, Japan
| | - Jun I Kawahara
- Department of Psychology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Ezzina S, Scotti M, Roume C, Pla S, Blain H, Delignières D. Interpersonal Synchronization Processes in Discrete and Continuous Tasks. J Mot Behav 2020; 53:583-597. [PMID: 32867621 DOI: 10.1080/00222895.2020.1811629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Three frameworks have been proposed to account for interpersonal synchronization: The information processing approach argues that synchronization is achieved by mutual adaptation, the coordination dynamics perspective supposes a continuous coupling between systems, and complexity matching suggests a global, multi-scale interaction. We hypothesized that the relevancy of these models was related to the nature of the performed tasks. 10 dyads performed synchronized tapping and synchronized forearm oscillations, in two conditions: full (participants had full information about their partner), and digital (information was limited to discrete auditory signals). Results shows that whatever the task and the available information, synchronization was dominated by a discrete mutual adaptation. These results question the relevancy of the coordination dynamics perspective in interpersonal coordination.
Collapse
Affiliation(s)
- Samar Ezzina
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.,Union Sportive Léo Lagrange, Paris, France
| | - Maxime Scotti
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Clément Roume
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Simon Pla
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Hubert Blain
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.,Montpellier University Hospital, Montpellier, France
| | - Didier Delignières
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
10
|
The effect of experience in movement coordination with music on polyrhythmic production: Comparison between artistic swimmers and water polo players during eggbeater kick performance. PLoS One 2020; 15:e0238197. [PMID: 32841286 PMCID: PMC7447008 DOI: 10.1371/journal.pone.0238197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to compare artistic swimmers (ASs) and water polo players (WPs) in their polyrhythmic production ability and entrainment between arm and leg motion frequency. Nine ASs and nine WPs participated in the study. First, we assessed the natural eggbeater kick frequency of each participant without any additional motion for 20 s. We then required the participants to perform a circular arm movement in synchronization with two sequences of metronome rhythms (either 100%, 80% and 120% or100%, 120% and 80% of their natural eggbeater kick frequency) while maintaining their natural eggbeater kick frequency. All tasks were repeated three times. The participants’ performances were recorded by a motion capture system synchronized with the metronome. A two-way mixed-design ANOVA was performed on the coefficient of variation of natural eggbeater kick frequency obtained from the first task to confirm the consistency of participants’ kicking motion. In the second task, a three-way mixed-design ANOVA was performed on the average frequency of the arm and leg motions to assess the entrainment between the two. In the first task, there were no significant main effects and interaction between group and trial in the coefficient of variation of eggbeater kick frequency, suggesting that both WPs and ASs maintained their natural eggbeater kick frequency equally consistently. In the second task, however, WPs were not able to maintain their natural eggbeater kick frequency when they were required to do circular arm movements at 120% tempo (p < .01). On the other hand, ASs successfully maintained their natural eggbeater kick frequency with all metronome rhythms, suggesting that they have a better polyrhythmic production ability than WPs.
Collapse
|
11
|
Towards an Understanding of Control of Complex Rhythmical "Wavelike" Coordination in Humans. Brain Sci 2020; 10:brainsci10040215. [PMID: 32260547 PMCID: PMC7226120 DOI: 10.3390/brainsci10040215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
How does the human neurophysiological system self-organize to achieve optimal phase relationships among joints and limbs, such as in the composite rhythms of butterfly and front crawl swimming, drumming, or dancing? We conducted a systematic review of literature relating to central nervous system (CNS) control of phase among joint/limbs in continuous rhythmic activities. SCOPUS and Web of Science were searched using keywords “Phase AND Rhythm AND Coordination”. This yielded 1039 matches from which 23 papers were extracted for inclusion based on screening criteria. The empirical evidence arising from in-vivo, fictive, in-vitro, and modelling of neural control in humans, other species, and robots indicates that the control of movement is facilitated and simplified by innervating muscle synergies by way of spinal central pattern generators (CPGs). These typically behave like oscillators enabling stable repetition across cycles of movements. This approach provides a foundation to guide the design of empirical research in human swimming and other limb independent activities. For example, future research could be conducted to explore whether the Saltiel two-layer CPG model to explain locomotion in cats might also explain the complex relationships among the cyclical motions in human swimming.
Collapse
|
12
|
Leach D, Kolokotroni Z, Wilson AD. Perceptual information supports transfer of learning in coordinated rhythmic movement. PSYCHOLOGICAL RESEARCH 2020; 85:1167-1182. [PMID: 32130496 PMCID: PMC8049895 DOI: 10.1007/s00426-020-01308-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
In this paper, we trained people to produce 90° mean relative phase using task-appropriate feedback and investigated whether and how that learning transfers to other coordinations. Past work has failed to find transfer of learning to other relative phases, only to symmetry partners (identical coordinations with reversed lead–lag relationships) and to other effector combinations. However, that research has all trained people using transformed visual feedback (visual metronomes, Lissajous feedback) which removes the relative motion information typically used to produce various coordinations (relative direction, relative position; Wilson and Bingham, in Percept Psychophys 70(3):465–476, 2008). Coordination feedback (Wilson et al., in J Exp Psychol Hum Percept Perform 36(6):1508, 2010) preserves that information and we have recently shown that relative position supports transfer of learning between unimanual and bimanual performance of 90° (Snapp-Childs et al., in Exp Brain Res 233(7), 2225–2238, 2015). Here, we ask whether that information can support the production of other relative phases. We found large, asymmetric transfer of learning bimanual 90° to bimanual 60° and 120°, supported by perceptual learning of relative position information at 90°. For learning to transfer, the two tasks must overlap in some critical way; this is additional evidence that this overlap must be informational. We discuss the results in the context of an ecological, task dynamical approach to understanding the nature of perception–action tasks.
Collapse
Affiliation(s)
- Daniel Leach
- Department of Psychology, Leeds School of Social Sciences, Leeds Beckett University, Leeds, UK
| | - Zoe Kolokotroni
- Department of Psychology, Leeds School of Social Sciences, Leeds Beckett University, Leeds, UK
| | - Andrew D Wilson
- Department of Psychology, Leeds School of Social Sciences, Leeds Beckett University, Leeds, UK.
| |
Collapse
|
13
|
Samulski B, Prebor J, Armitano-Lago C, Morrison S. Age-related changes in neuromotor function when performing a concurrent motor task. Exp Brain Res 2020; 238:565-574. [DOI: 10.1007/s00221-020-05736-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
|
14
|
Kovacs AJ, Wang Y, Kennedy DM. Accessing interpersonal and intrapersonal coordination dynamics. Exp Brain Res 2019; 238:17-27. [PMID: 31754737 DOI: 10.1007/s00221-019-05676-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Both intrapersonal and interpersonal coordination dynamics have traditionally been investigated using relative phase patterns of in-phase (ϕ = 0°) and/or anti-phase (ϕ = 180°). Numerous investigations have demonstrated that coordination tasks that require other relative phase patterns (e.g., 90°) are difficult or near impossible to perform without extended practice. Recent findings, however, have demonstrated that an individual can produce a wide range of intrapersonal bimanual patterns within a few minutes of practice when provided integrated feedback. The present experiment was designed to directly compare intra- and interpersonal coordination performance and variability when provided Lissajous feedback or pacing metronome. Single participants (N = 12) and pairs of participants (N = 24, 12 pairs) were required to produce relative phase patterns between 0° and 180° in 30° increments using either pacing metronomes or Lissajous displays. The Lissajous displays involved a goal template and a cursor providing integrated feedback regarding the position of the two effectors. The results indicated both single and pairs of participants could effectively produce a large range of coordination patterns that typically act as repellers after only 6 min of practice when provided integrated feedback. However, single participants performed the in-phase coordination pattern more accurately and with less variability than paired participants, regardless of the feedback condition. These results suggest an advantage for intrapersonal coordination when performing in-phase coordination, possibly due to the stabilizing effect occurring via the neuro-muscular linkage between effectors.
Collapse
Affiliation(s)
| | - Yiyu Wang
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77802, USA
| | - Deanna M Kennedy
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
15
|
Zanto TP, Padgaonkar NT, Nourishad A, Gazzaley A. A Tablet-Based Assessment of Rhythmic Ability. Front Psychol 2019; 10:2471. [PMID: 31736843 PMCID: PMC6838143 DOI: 10.3389/fpsyg.2019.02471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2019] [Indexed: 01/21/2023] Open
Abstract
The exponential rise in use of mobile consumer electronics has presented a great potential for research to be conducted remotely, with participants numbering several orders of magnitude greater than a typical research paradigm. Here, we attempt to demonstrate the validity and reliability of using a consumer game-engine to create software presented on a mobile tablet to assess sensorimotor synchronization, a proxy of rhythmic ability. Our goal was to ascertain whether previously observed research results can be replicated, rather than assess whether a mobile tablet achieves comparable performance to a desktop computer. To achieve this, younger (aged 18–35 years) and older (aged 60–80 years) adult musicians and non-musicians were recruited to play a custom-designed sensorimotor synchronization assessment on a mobile tablet in a controlled laboratory environment. To assess reliability, participants performed the assessment twice, separated by a week, and an intra-class correlation coefficient (ICC) was calculated. Results supported the validity of this approach to assessing rhythmic abilities by replicating previously observed results. Specifically, musicians performed better than non-musicians, and younger adults performed better than older adults. Participants also performed best when the tempo was in the range of previously-identified preferred tempos, when the stimuli included both audio and visual information, and when synchronizing on-beat compared to off-beat or continuation (self-paced) synchronization. Additionally, high ICC values (>0.75) suggested excellent test–retest reliability. Together, these results support the notion that consumer electronics running software built with a game engine may serve as a valuable resource for remote, mobile-based data collection of rhythmic abilities.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscape, University of California, San Francisco, San Francisco, CA, United States
| | - Namita T Padgaonkar
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscape, University of California, San Francisco, San Francisco, CA, United States.,Interdepartmental Neuroscience Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alex Nourishad
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscape, University of California, San Francisco, San Francisco, CA, United States.,Department of Psychiatry, Mount Sinai Beth Israel, New York, NY, United States
| | - Adam Gazzaley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscape, University of California, San Francisco, San Francisco, CA, United States.,Department of Physiology and Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Abstract
In 2010, Bechtel and Abrahamsen defined and described what it means to be a dynamic causal mechanistic explanatory model. They discussed the development of a mechanistic explanation of circadian rhythms as an exemplar of the process and challenged cognitive science to follow this example. This article takes on that challenge. A mechanistic model is one that accurately represents the real parts and operations of the mechanism being studied. These real components must be identified by an empirical programme that decomposes the system at the correct scale and localises the components in space and time. Psychological behaviour emerges from the nature of our real-time interaction with our environments—here we show that the correct scale to guide decomposition is picked out by the ecological perceptual information that enables that interaction. As proof of concept, we show that a simple model of coordinated rhythmic movement, grounded in information, is a genuine dynamical mechanistic explanation of many key coordination phenomena.
Collapse
|
17
|
Wang C, Shea CH. Bimanual control strategies. Q J Exp Psychol (Hove) 2018; 72:966-978. [PMID: 29792374 DOI: 10.1177/1747021818781772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two tasks (A and B) were designed which required participants to sequentially move through four target positions in a Lissajous display. Task A was designed so that participants could complete the task using either unimanual or bimanual control strategies. Task B was designed so that participants could complete the task using relatively simple or more complex bimanual control strategies. The purpose of this study was to determine which control strategy the participant utilises to complete the two tasks when Lissajous displays are provided and to determine the degree to which the size of the targets influences the control strategy chosen under these conditions. The movement amplitude between two adjacent targets and the target size resulted in an Index of Difficulty (ID) of 2 and 4 for each task. For both tasks, participants practised 15 trials (30 s per trial) for each ID and then was administered a test trial. The results for both Tasks A and B indicated that the ID2 condition resulted in a circular path, whereas the ID4 condition resulted in a straight-line path on the Lissajous plot. This suggests that at the low ID condition participants produced a continuous 1:1 with 90° phase offset bimanual coordination pattern. At the high ID condition, the participants consistently chose to switch to a more stable unimanual left and right movements in Task A and to transition between in-phase and anti-phase bimanual coordination patterns in Task B. In addition, both limbs' movements were more harmonic in the low ID condition than in the high ID condition.
Collapse
Affiliation(s)
- Chaoyi Wang
- 1 College of Physical Education, Jilin University, Changchun, China
| | - Charles H Shea
- 2 Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
18
|
Michael P. Constraints in the Performance of Bimanual Tasks and Their Expression in Unskilled and Skilled Subjects. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/14640748508400929] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Unskilled and skilled subjects were asked to perform a variety of bimanual tapping tasks. Three major effects were seen. First, right-handers performed dual tasks better when the preferred hand took the “figure” and when the nonpreferred hand took the “ground” of the dual movement. This effect was not seen in left-handers. Second, subjects performed a simple slow/fast dual task better when they commenced the task with the fast rather than with the slow hand. This effect was seen in right- and lefthanders. Third, both unskilled and skilled subjects showed marked interdependence of movements such that performance of one hand was a function of movements in the other hand. The results are in agreement with a model that postulates the presence of a superordinate control mechanism that initiates action in subordinate control mechanisms, which in turn set the movement trajectories in the two hands. The results also show that attention is an important factor in the interaction between these two levels of control.
Collapse
Affiliation(s)
- Peters Michael
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Wang C, Kennedy DM, Panzer S, Shea CH. Intentional Switching Between Bimanual Coordination Patterns. J Mot Behav 2017; 50:538-556. [PMID: 29016257 DOI: 10.1080/00222895.2017.1375453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous theoretical and empirical work indicates that intentional changes in a bimanual coordination pattern depends on the stability of the bimanual coordination pattern (Kelso, Schotz, & Schöner, 1988; Scholz & Kelso, 1990). The present experiments retest this notion when online Lissajous displays are provided. Switching to and from in-phase and antiphase and to and from 90° and 270° were tested in Experiment 1. Participants were able to very effectively produce the 180°, 90°, and 270° coordination patterns although performance of the in-phase coordination task was even more stable. The data indicated that switching to in-phase from antiphase was more rapid than vice versa and that switching times between 90° to 270° were similar. Experiment 2 investigated switching between 1:2 and 2:1 bimanual coordination patterns. The results indicated that switching time was similar between the 2:1 and 1:2 coordination tasks and that increases in stability over practice resulted in additional decreases in switching times. This provides additional evidence that the attractor landscape is fundamentally different dependent on the type of information provided the performer. What remains to be done is to reconcile these results with the various theories/perspectives currently used to describe and explain bimanual coordination.
Collapse
Affiliation(s)
- Chaoyi Wang
- a College of Physical Education , Jilin University , China
| | - Deanna M Kennedy
- b Department of Health and Kinesiology , Texas A&M University , College Station
| | - Stefan Panzer
- c Human Movement Sciences , University of Saarland , Saarbrücken , Germany
| | - Charles H Shea
- b Department of Health and Kinesiology , Texas A&M University , College Station
| |
Collapse
|
20
|
Arnoux L, Fromentin S, Farotto D, Beraneck M, McIntyre J, Tagliabue M. The visual encoding of purely proprioceptive intermanual tasks is due to the need of transforming joint signals, not to their interhemispheric transfer. J Neurophysiol 2017; 118:1598-1608. [PMID: 28615330 DOI: 10.1152/jn.00140.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/22/2022] Open
Abstract
To perform goal-oriented hand movement, humans combine multiple sensory signals (e.g., vision and proprioception) that can be encoded in various reference frames (body centered and/or exo-centered). In a previous study (Tagliabue M, McIntyre J. PLoS One 8: e68438, 2013), we showed that, when aligning a hand to a remembered target orientation, the brain encodes both target and response in visual space when the target is sensed by one hand and the response is performed by the other, even though both are sensed only through proprioception. Here we ask whether such visual encoding is due 1) to the necessity of transferring sensory information across the brain hemispheres, or 2) to the necessity, due to the arms' anatomical mirror symmetry, of transforming the joint signals of one limb into the reference frame of the other. To answer this question, we asked subjects to perform purely proprioceptive tasks in different conditions: Intra, the same arm sensing the target and performing the movement; Inter/Parallel, one arm sensing the target and the other reproducing its orientation; and Inter/Mirror, one arm sensing the target and the other mirroring its orientation. Performance was very similar between Intra and Inter/Mirror (conditions not requiring joint-signal transformations), while both differed from Inter/Parallel. Manipulation of the visual scene in a virtual reality paradigm showed visual encoding of proprioceptive information only in the latter condition. These results suggest that the visual encoding of purely proprioceptive tasks is not due to interhemispheric transfer of the proprioceptive information per se, but to the necessity of transforming joint signals between mirror-symmetric limbs.NEW & NOTEWORTHY Why does the brain encode goal-oriented, intermanual tasks in a visual space, even in the absence of visual feedback about the target and the hand? We show that the visual encoding is not due to the transfer of proprioceptive signals between brain hemispheres per se, but to the need, due to the mirror symmetry of the two limbs, of transforming joint angle signals of one arm in different joint signals of the other.
Collapse
Affiliation(s)
- Léo Arnoux
- Center for Neurophysics, Physiology & Pathology, UMR 8119, CNRS Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sebastien Fromentin
- Center for Neurophysics, Physiology & Pathology, UMR 8119, CNRS Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dario Farotto
- Center for Neurophysics, Physiology & Pathology, UMR 8119, CNRS Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Beraneck
- Center for Neurophysics, Physiology & Pathology, UMR 8119, CNRS Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joseph McIntyre
- Center for Neurophysics, Physiology & Pathology, UMR 8119, CNRS Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Ikerbasque Science Foundation, Bilbao, Spain; and.,Health Division, Tecnalia Research & Development, San Sebastian, Spain
| | - Michele Tagliabue
- Center for Neurophysics, Physiology & Pathology, UMR 8119, CNRS Université Paris Descartes, Sorbonne Paris Cité, Paris, France;
| |
Collapse
|
21
|
Do accuracy requirements change bimanual and unimanual control processes similarly? Exp Brain Res 2017; 235:1467-1479. [DOI: 10.1007/s00221-017-4908-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|
22
|
Deviations from mirroring in interpersonal multifrequency coordination when visual information is occluded. Exp Brain Res 2017; 235:1209-1221. [DOI: 10.1007/s00221-017-4888-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
23
|
Olivier A, Faugloire E, Lejeune L, Biau S, Isableu B. Head Stability and Head-Trunk Coordination in Horseback Riders: The Contribution of Visual Information According to Expertise. Front Hum Neurosci 2017; 11:11. [PMID: 28194100 PMCID: PMC5277006 DOI: 10.3389/fnhum.2017.00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Maintaining equilibrium while riding a horse is a challenging task that involves complex sensorimotor processes. We evaluated the relative contribution of visual information (static or dynamic) to horseback riders' postural stability (measured from the variability of segment position in space) and the coordination modes they adopted to regulate balance according to their level of expertise. Riders' perceptual typologies and their possible relation to postural stability were also assessed. Our main assumption was that the contribution of visual information to postural control would be reduced among expert riders in favor of vestibular and somesthetic reliance. Twelve Professional riders and 13 Club riders rode an equestrian simulator at a gallop under four visual conditions: (1) with the projection of a simulated scene reproducing what a rider sees in the real context of a ride in an outdoor arena, (2) under stroboscopic illumination, preventing access to dynamic visual cues, (3) in normal lighting but without the projected scene (i.e., without the visual consequences of displacement) and (4) with no visual cues. The variability of the position of the head, upper trunk and lower trunk was measured along the anteroposterior (AP), mediolateral (ML), and vertical (V) axes. We computed discrete relative phase to assess the coordination between pairs of segments in the anteroposterior axis. Visual field dependence-independence was evaluated using the Rod and Frame Test (RFT). The results showed that the Professional riders exhibited greater overall postural stability than the Club riders, revealed mainly in the AP axis. In particular, head variability was lower in the Professional riders than in the Club riders in visually altered conditions, suggesting a greater ability to use vestibular and somesthetic information according to task constraints with expertise. In accordance with this result, RFT perceptual scores revealed that the Professional riders were less dependent on the visual field than were the Club riders. Finally, the Professional riders exhibited specific coordination modes that, unlike the Club riders, departed from pure in-phase and anti-phase patterns and depended on visual conditions. The present findings provide evidence of major differences in the sensorimotor processes contributing to postural control with expertise in horseback riding.
Collapse
Affiliation(s)
- Agnès Olivier
- CIAMS, Univ Paris-Sud, Université Paris-SaclayOrsay, France; CIAMS, Université d'OrléansOrléans, France; Normandie Univ, UNICAEN, CESAMSCaen, France
| | | | | | - Sophie Biau
- ENE, Institut Français du Cheval et de l'Equitation Saumur, France
| | | |
Collapse
|
24
|
Faria I, Diniz A, Barreiros J. Manual asymmetries in bimanual isochronous tapping tasks in children. Acta Psychol (Amst) 2017; 172:41-48. [PMID: 27875785 DOI: 10.1016/j.actpsy.2016.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 10/29/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022] Open
Abstract
Tapping tasks have been investigated throughout the years, with variations in features such as the complexity of the task, the use of one or both hands, the employ of auditory or visual stimuli, and the characteristics of the subjects. The evaluation of lateral asymmetries in tapping tasks in children offers an insight into the structure of rhythmic movements and handedness at early stages of development. The current study aims to investigate the ability of children (aged six and seven years-old) to maintain a rhythm, in a bimanual tapping task at two different target frequencies, as well as the manual asymmetries displayed while doing so. The analyzed data in this work are the series of the time intervals between successive taps. We suggest several profiles of behavior, regarding the overall performance of children in both tempo conditions. We also propose a new method of quantifying the variability of the performance and the asymmetry of the hands, based on ellipses placed on scatter plots of the non-dominant-dominant series versus the dominant-non-dominant series. We then use running correlations to identify changes of coordination tendencies over time. The main results show that variability is larger in the task with the longer target interval. Furthermore, most children evidence lateral asymmetries, but in general they show the capacity to maintain the mean of consecutive intertap intervals of both hands close to the target interval. Finally, we try to interpret our findings in the light of existing models and timing modes.
Collapse
|
25
|
Roche R, Viswanathan P, Clark JE, Whitall J. Children with developmental coordination disorder (DCD) can adapt to perceptible and subliminal rhythm changes but are more variable. Hum Mov Sci 2016; 50:19-29. [PMID: 27658264 DOI: 10.1016/j.humov.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 11/24/2022]
Abstract
Children with DCD demonstrate impairments in bimanual finger tapping during self-paced tapping and tapping in synchrony to different frequencies. In this study, we investigated the ability of children with DCD to adapt motorically to perceptible or subliminal changes of the auditory stimuli without a change in frequency, and compared their performance to typically developing controls (TDC). Nineteen children with DCD between ages 6-11years (mean age±SD=114±21months) and 17 TDC (mean age±SD=113±21months) participated in this study. Auditory perceptual threshold was established. Children initially tapped bimanually to an antiphase beat and then to either a perceptible change in rhythm or to gradual subliminal changes in rhythm. Children with DCD were able to perceive changes in rhythm similar to TDC. They were also able to adapt to both perceptible and subliminal changes in rhythms similar to their age- and gender- matched TDC. However, these children were significantly more variable compared with TDC in all phasing conditions. The results suggest that the performance impairments in bilateral tapping are not a result of poor conscious or sub-conscious perception of the auditory cue. The increased motor variability may be associated with cerebellar dysfunction but further behavioral and neurophysiological studies are needed.
Collapse
Affiliation(s)
- Renuka Roche
- Occupational Therapy Program, Eastern Michigan University, Ypsilanti, MI, USA.
| | - Priya Viswanathan
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jane E Clark
- Department of Kinesiology and Neurosciences and Cognitive Science Program, School of Public Health, University of Maryland, College Park, MD, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA; Faculty of Health Sciences, University of Southampton, Hampshire, UK
| |
Collapse
|
26
|
Rice MS, Newell KM. Interlimb Coupling and Left Hemiplegia Because of Right Cerebral Vascular Accident. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153944920102100102] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study examined interlimb coupling in a left hemiplegic population. Participants were 20 healthy individuals and 18 individuals who were status post right cerebral vascular accident with left hemiparesis. Participants oscillated each elbow at both preferred-unilateral and preferred-symmetrical bilateral rates. One-tailed paired t-tests using frequency of oscillation and peak velocity supported the hypothesis that the unaffected limb would adapt its movement dynamics from the unilateral to the bilateral movement conditions (ps < .0125), while the affected limb did not differ its performance across the unilateral and bilateral conditions (ps > .0125). No significance (p > .0125) was found between the unilateral and bilateral performances for either of the normal group's limbs. This study suggests that during bilateral movements, the affected limb may constrain the unaffected limb. More research is needed to examine the coupling relationship between the affected and unaffected limbs and how occupation may facilitate the ability to adapt to novel situations.
Collapse
|
27
|
Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS. Dissociation of Spatial and Temporal Coupling in the Bimanual Movements of Callosotomy Patients. Psychol Sci 2016. [DOI: 10.1111/j.1467-9280.1996.tb00379.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neural mechanisms of limb coordination were investigated by testing callosotomy patients and normal control subjects on bimanual movements Normal subjects produced deviations in the trajectories when spatial demands for the two hands were different, despite temporal synchrony in the onset of bimanual movements Callosotomy patients did not produce spatial deviations, although their hands moved with normal temporal synchrony Normal subjects but not callosotomy patients exhibited large increases in planning and execution time for movements with different spatial demands for the two hands relative to movements with identical spatial demands for the two hands This neural dissociation indicates that spatial interference in movements results from callosal connections, whereas temporal synchrony in movement onset does not rely on the corpus callosum
Collapse
Affiliation(s)
| | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley
| | | |
Collapse
|
28
|
Nomura Y, Jono Y, Tani K, Chujo Y, Hiraoka K. Corticospinal Modulations during Bimanual Movement with Different Relative Phases. Front Hum Neurosci 2016; 10:95. [PMID: 27014026 PMCID: PMC4779941 DOI: 10.3389/fnhum.2016.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/22/2016] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to investigate corticospinal modulation of bimanual (BM) movement with different relative phases (RPs). The participants rhythmically abducted and adducted the right index finger (unimanual (UM) movement) or both index fingers (BM movement) with a cyclic duration of 1 s. The RP of BM movement, defined as the time difference between one hand movement and the other hand movement, was 0°, 90°, or 180°. Motor evoked potentials (MEPs) in the right flexor dorsal interosseous muscle elicited by transcranial magnetic stimulation (TMS) were obtained during UM or BM movement. Corticospinal excitability in the first dorsal interosseous muscle during BM movement with 90° RP was higher than that during UM movement or BM movement with 0° or 180° RP. The correlation between muscle activity level and corticospinal excitability during BM movement with 90° RP was smaller than that during UM movement or BM movement with 0° or 180° RP. The higher corticospinal excitability during BM movement with 90° RP may be caused by the greater effort expended to execute a difficult task, the involvement of interhemispheric interaction, a motor binding process, or task acquisition. The lower dependency of corticospinal excitability on the muscle activity level during BM movement with 90° RP may reflect the minor corticospinal contribution to BM movement with an RP that is not in the attractor state.
Collapse
Affiliation(s)
- Yoshifumi Nomura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Yasutomo Jono
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Keisuke Tani
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Yuta Chujo
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Koichi Hiraoka
- College of Health and Human Sciences, Osaka Prefecture University Habikino, Japan
| |
Collapse
|
29
|
Kennedy DM, Wang C, Panzer S, Shea CH. Continuous scanning trials:Transitioning through the attractor landscape. Neurosci Lett 2016; 610:66-72. [DOI: 10.1016/j.neulet.2015.10.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022]
|
30
|
Kostrubiec V, Dumas G, Zanone PG, Kelso JAS. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp. PLoS One 2015; 10:e0142029. [PMID: 26569608 PMCID: PMC4646495 DOI: 10.1371/journal.pone.0142029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/17/2015] [Indexed: 11/30/2022] Open
Abstract
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.
Collapse
Affiliation(s)
- Viviane Kostrubiec
- EA-4561 PRISSMH, Université de Toulouse, UPS, Toulouse, France
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Guillaume Dumas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States of America
| | | | - J. A. Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States of America
- Intelligent Systems Research Centre, University of Ulster, Derry ~ Londonderry, N. Ireland
| |
Collapse
|
31
|
Callosal anatomical and effective connectivity between primary motor cortices predicts visually cued bimanual temporal coordination performance. Brain Struct Funct 2015; 221:3427-43. [DOI: 10.1007/s00429-015-1110-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
|
32
|
Perception and action influences on discrete and reciprocal bimanual coordination. Psychon Bull Rev 2015; 23:361-86. [DOI: 10.3758/s13423-015-0915-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Blais M, Albaret JM, Tallet J. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations. Exp Brain Res 2015; 233:3261-9. [PMID: 26238405 DOI: 10.1007/s00221-015-4394-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to test how the sensory modality of rhythmic stimuli affects the production of bimanual coordination patterns. To this aim, participants had to synchronize the taps of their two index fingers with auditory and visual stimuli presented separately (auditory or visual) or simultaneously (audio-visual). This kind of task requires two levels of coordination: (1) sensorimotor coordination, which can be measured by the mean asynchrony between the beat of the stimulus and the corresponding tap and by mean asynchrony stability, and (2) inter-manual coordination, which can be assessed by the accuracy and stability of the relative phase between the right-hand and left-hand taps. Previous studies show that sensorimotor coordination is better during the synchronization with auditory or audio-visual metronomes than with visual metronome, but it is not known whether inter-manual coordination is affected by stimulation modalities. To answer this question, 13 participants were required to tap their index fingers in synchrony with the beat of auditory and/or visual stimuli specifying three coordination patterns: two preferred inphase and antiphase patterns and a non-preferred intermediate pattern. A first main result demonstrated that inphase tapping had the best inter-manual stability, but the worst asynchrony stability. The second main finding revealed that for all patterns, audio-visual stimulation improved the stability of sensorimotor coordination but not of inter-manual coordination. The combination of visual and auditory modalities results in multisensory integration, which improves sensorimotor coordination but not inter-manual coordination. Both results suggest that there is dissociation between processes underlying sensorimotor synchronization (anticipation or reactivity) and processes underlying inter-manual coordination (motor control). This finding opens new perspectives to evaluate separately the possible sensorimotor and inter-manual coordination deficits present in movement disorders.
Collapse
Affiliation(s)
- Mélody Blais
- Laboratory PRISSMH-LAPMA (EA 4651), University of Paul Sabatier Toulouse 3, 31062, Toulouse, France
| | - Jean-Michel Albaret
- Laboratory PRISSMH-LAPMA (EA 4651), University of Paul Sabatier Toulouse 3, 31062, Toulouse, France
| | - Jessica Tallet
- Laboratory PRISSMH-LAPMA (EA 4651), University of Paul Sabatier Toulouse 3, 31062, Toulouse, France.
| |
Collapse
|
34
|
Kodama K, Furuyama N, Inamura T. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments. PLoS One 2015; 10:e0129358. [PMID: 26070119 PMCID: PMC4466560 DOI: 10.1371/journal.pone.0129358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/07/2015] [Indexed: 11/28/2022] Open
Abstract
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.
Collapse
Affiliation(s)
- Kentaro Kodama
- Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa-ken, Japan
- * E-mail:
| | - Nobuhiro Furuyama
- Waseda University, 2-579-15, Mikajima, Tokorozawa-shi, Saitama-ken Japan
| | - Tetsunari Inamura
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
- The Graduate University for Advanced Studies, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
35
|
Buchanan JJ. Perceptual Estimates of Motor Skill Proficiency Are Constrained by the Stability of Coordination Patterns. J Mot Behav 2015; 47:453-64. [PMID: 25763507 DOI: 10.1080/00222895.2015.1008687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Buchanan JJ, Ramos J, Robson N. The perception–action dynamics of action competency are altered by both physical and observational training. Exp Brain Res 2015; 233:1289-305. [DOI: 10.1007/s00221-015-4207-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
|
37
|
Potgieser ARE, de Jong BM, Wagemakers M, Hoving EW, Groen RJM. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition. Front Hum Neurosci 2014; 8:960. [PMID: 25506324 PMCID: PMC4246659 DOI: 10.3389/fnhum.2014.00960] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022] Open
Abstract
The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the SMA syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson's disease (PD) and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the SMA.
Collapse
Affiliation(s)
- A. R. E. Potgieser
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - B. M. de Jong
- Department of Neurology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - M. Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - E. W. Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - R. J. M. Groen
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
38
|
Rhythmical bimanual force production: homologous and non-homologous muscles. Exp Brain Res 2014; 233:181-95. [DOI: 10.1007/s00221-014-4102-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/06/2014] [Indexed: 12/16/2022]
|
39
|
You are in sync with me: neural correlates of interpersonal synchrony with a partner. Neuroscience 2014; 277:842-58. [PMID: 25088911 DOI: 10.1016/j.neuroscience.2014.07.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 11/24/2022]
Abstract
Interpersonal synchrony is characterized by a temporary alignment of periodic behaviors with another person. This process requires that at least one of the two individuals monitors and adjusts his/her movements to maintain alignment with the other individual (the referent). Interestingly, recent research on interpersonal synchrony has found that people who are motivated to befriend an unfamiliar social referent tend to automatically synchronize with their social referents, raising the possibility that synchrony may be employed as an affiliation tool. It is unknown, however, whether the opposite is true; that is, whether the person serving as the referent of interpersonal synchrony perceives synchrony with his/her partner or experiences affiliative feelings toward the partner. To address this question, we performed a series of studies on interpersonal synchrony with a total of 100 participants. In all studies, participants served as the referent with no requirement to monitor or align their behavior with their partners. Unbeknown to the participants, the timings of their "partner's" movements were actually determined by a computer program based on the participant's (i.e., referent's) behavior. Overall, our behavioral results showed that the referent of a synchrony task expressed greater perceived synchrony and greater social affiliation toward a synchronous partner (i.e., one displaying low mean asynchrony and/or a narrow asynchrony range) than with an asynchronous partner (i.e., one displaying high mean asynchrony and/or high asynchrony range). Our neuroimaging study extended these results by demonstrating involvement of brain areas implicated in social cognition, embodied cognition, self-other expansion, and action observation as correlates of interpersonal synchrony (vs. asynchrony). These findings have practical implications for social interaction and theoretical implications for understanding interpersonal synchrony and social coordination.
Collapse
|
40
|
Sleimen-Malkoun R, Temprado JJ, Hong SL. Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels. Front Aging Neurosci 2014; 6:140. [PMID: 25018731 PMCID: PMC4073624 DOI: 10.3389/fnagi.2014.00140] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/11/2014] [Indexed: 11/13/2022] Open
Abstract
Growing evidence demonstrates that aging not only leads to structural and functional alterations of individual components of the neuro-musculo-skeletal system (NMSS) but also results in a systemic re-organization of interactions within and between the different levels and functional domains. Understanding the principles that drive the dynamics of these re-organizations is an important challenge for aging research. The present Hypothesis and Theory paper is a contribution in this direction. We propose that age-related declines in brain and behavior that have been characterized in the literature as dedifferentiation and the loss of complexity (LOC) are: (i) synonymous; and (ii) integrated. We argue that a causal link between the aforementioned phenomena exists, evident in the dynamic changes occurring in the aging NMSS. Through models and methods provided by a dynamical systems approach to coordination processes in complex living systems, we: (i) formalize operational hypotheses about the general principles of changes in cross-level and cross-domain interactions during aging; and (ii) develop a theory of the aging NMSS based on the combination of the frameworks of coordination dynamics (CD), dedifferentiation, and LOC. Finally, we provide operational predictions in the study of aging at neural, muscular, and behavioral levels, which lead to testable hypotheses and an experimental agenda to explore the link between CD, LOC and dedifferentiation within and between these different levels.
Collapse
Affiliation(s)
- Rita Sleimen-Malkoun
- CNRS, Institut des Sciences du Mouvement UMR 7287, Aix-Marseille Université Marseille, France ; Inserm, Institut de Neurosciences des Systèmes UMR_S 1106, Faculté de Médecine Timone, Aix-Marseille Université Marseille, France
| | - Jean-Jacques Temprado
- CNRS, Institut des Sciences du Mouvement UMR 7287, Aix-Marseille Université Marseille, France
| | - S Lee Hong
- Ohio Musculoskeletal and Neurological Institute, Ohio University Athens, OH, USA
| |
Collapse
|
41
|
Coats RO, Wilson AD, Snapp-Childs W, Fath AJ, Bingham GP. The 50s cliff: perceptuo-motor learning rates across the lifespan. PLoS One 2014; 9:e85758. [PMID: 24475051 PMCID: PMC3901653 DOI: 10.1371/journal.pone.0085758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022] Open
Abstract
We recently found that older adults show reduced learning rates when learning a new pattern of coordinated rhythmic movement. The purpose of this study was to extend that finding by examining the performance of all ages across the lifespan from the 20 s through to the 80 s to determine how learning rates change with age. We tested whether adults could learn to produce a novel coordinated rhythmic movement (90° relative phase) in a visually guided unimanual task. We determined learning rates to quantify changes in learning with age and to determine at what ages the changes occur. We found, as before, that learning rates of participants in their 70 s and 80 s were half those of participants in their 20 s. We also found a gradual slow decline in learning rate with age until approximately age 50, when there was a sudden drop to a reduced learning rate for the 60 though 80 year olds. We discuss possible causes for the “50 s cliff” in perceptuo-motor learning rates and suggest that age related deficits in perception of complex motions may be the key to understanding this result.
Collapse
Affiliation(s)
- Rachel O. Coats
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Andrew D. Wilson
- School of Social, Psychological and Communication Sciences, Leeds Metropolitan University, Leeds, United Kingdom
| | - Winona Snapp-Childs
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Aaron J. Fath
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Geoffrey P. Bingham
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
42
|
Auditory-motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict. Exp Brain Res 2014; 232:1207-18. [PMID: 24449013 DOI: 10.1007/s00221-014-3837-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (nine per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high-threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set. Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier sub-cortical circuitry in those with higher thresholds.
Collapse
|
43
|
Peper CLE, Van Loon ECP, Van de Rijt A, Salverda A, van Kuijk AA. Bimanual training for children with cerebral palsy: exploring the effects of Lissajous-based computer gaming. Dev Neurorehabil 2013; 16:255-65. [PMID: 23477428 DOI: 10.3109/17518423.2012.760116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Hemiplegic cerebral palsy often results in impaired bimanual coordination, partly due to strong coupling between the arms. We aimed at inducing more flexibility in this coupling, to improve bimanual coordination. METHODS We designed computer games involving simple perceptual goals, based on Lissajous feedback. Such feedback implicitly facilitates the performance of complex rhythmic bimanual coordination patterns. A sample of six children received 9 h of computer training over a 6 weeks period. The effects of this training on functional bimanual performance were explored using the Assisting Hand Assessment (AHA). RESULTS Gaming performance and bimanual rhythmic antiphase coordination improved after training. The AHA results were mixed. Two children improved significantly, but at a group level no significant effects were found. CONCLUSIONS The results were evaluated in relation to the specificity of the AHA and the potential benefit of combining the proposed training with dedicated bimanual functional training programs.
Collapse
Affiliation(s)
- C Lieke E Peper
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Almeida QJ, Brown MJN. Is DOPA-Responsive Hypokinesia Responsible for Bimanual Coordination Deficits in Parkinson's Disease? Front Neurol 2013; 4:89. [PMID: 23882254 PMCID: PMC3715734 DOI: 10.3389/fneur.2013.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022] Open
Abstract
Bradykinesia is a well-documented DOPA-responsive clinical feature of Parkinson’s disease (PD). While amplitude deficits (hypokinesia) are a key component of this slowness, it is important to consider how dopamine influences both the amplitude (hypokinesia) and frequency components of bradykinesia when a bimanually coordinated movement is required. Based on the notion that the basal ganglia are associated with sensory deficits, the influence of dopaminergic replacement on sensory feedback conditions during bimanual coordination was also evaluated. Bimanual movements were examined in PD and healthy comparisons in an unconstrained three-dimensional coordination task. PD were tested “off” (overnight withdrawal of dopaminergic treatment) and “on” (peak dose of dopaminergic treatment), while the healthy group was evaluated for practice effects across two sessions. Required cycle frequency (increased within each trial from 0.75 to 2 Hz), type of visual feedback (no vision, normal vision, and augmented vision), and coordination pattern (symmetrical in-phase and non-symmetrical anti-phase) were all manipulated. Overall, coordination (mean accuracy and standard deviation of relative phase) and amplitude deficits during bimanual coordination were confirmed in PD participants. In addition, significant correlations were identified between severity of motor symptoms as well as bradykinesia to greater coordination deficits (accuracy and stability) in PD “off” group. However, even though amplitude deficits (hypokinesia) improved with dopaminergic replacement, it did not improve bimanual coordination performance (accuracy or stability) in PD patients from “off” to “on.” Interestingly, while coordination performance in both groups suffered in the augmented vision condition, the amplitude of the more affected limb of PD was notably influenced. It can be concluded that DOPA-responsive hypokinesia contributes to, but is not directly responsible for bimanual coordination impairments in PD. It is likely that bimanual coordination deficits in PD are caused by the combination of dopaminergic system dysfunction as well as other neural impairments that may be DOPA-resistant or related to non-dopaminergic pathways.
Collapse
Affiliation(s)
- Quincy J Almeida
- Sun Life Financial Movement Disorders Research and Rehabilitation Centre (MDRC), Wilfrid Laurier University , Waterloo, ON , Canada
| | | |
Collapse
|
45
|
A guide to performing difficult bimanual coordination tasks: just follow the yellow brick road. Exp Brain Res 2013; 230:31-40. [PMID: 23811738 DOI: 10.1007/s00221-013-3628-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
46
|
Rose DK, Winstein CJ. Temporal coupling is more robust than spatial coupling: an investigation of interlimb coordination after stroke. J Mot Behav 2013; 45:313-24. [PMID: 23819649 DOI: 10.1080/00222895.2013.798250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Interlimb coordination obtained through temporal and spatial coupling is a significant feature of human motor control. To understand the robustness of this capability the authors introduced a method to quantify interlimb coordination strength and compare individuals with asymmetric effector ability poststroke to nondisabled controls. Quantitative analyses determined the relative strength of interlimb coupling with an asymmetric obstacle avoidance task. Participants performed bimanual discrete, multijoint aiming movements in the frontal plane with a vertical barrier positioned midway to the target for one limb. To quantify coupling strength between limbs and groups, we regressed individual participant nonbarrier limb movement time or maximum vertical displacement separately, on barrier limb performance. Temporal and spatial interlimb coupling strength varied across participants in both groups. Barrier limb performance predicted nonbarrier limb behavior; however, interlimb coupling was significantly stronger for the nondisabled compared to the stroke group. In the stroke group, deficits in interlimb coordination affected spatial coupling more than temporal coupling. The decreased coupling strength detected, even in the presence of mild hemiparesis, demonstrates the measure's sensitivity. The authors propose this metric as a powerful assessment of the effectiveness of rehabilitation interventions and to monitor the recovery of bimanual coordination poststroke.
Collapse
Affiliation(s)
- Dorian K Rose
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610-0154, USA.
| | | |
Collapse
|
47
|
de Boer BJ, Peper C(LE, Beek PJ. Learning a New Bimanual Coordination Pattern: Interlimb Interactions, Attentional Focus, and Transfer. J Mot Behav 2013; 45:65-77. [DOI: 10.1080/00222895.2012.744955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Perceptuo-motor learning rate declines by half from 20s to 70/80s. Exp Brain Res 2012; 225:75-84. [PMID: 23212470 DOI: 10.1007/s00221-012-3349-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
This study examined perception-action learning in younger adults in their 20s compared to older adults in their 70s and 80s. The goal was to provide, for the first time, quantitative estimates of perceptuo-motor learning rates for each age group and to reveal how these learning rates change between these age groups. We used a visual coordination task in which participants are asked to learn to produce a novel-coordinated rhythmic movement. The task has been studied extensively in young adults, and the characteristics of the task are well understood. All groups showed improvement, although learning rates for those in their 70s and 80s were half the rate for those in their 20s. We consider the potential causes of these differences in learning rates by examining performance across the different coordination patterns examined as well as recent results that reveal age-related deficits in motion perception.
Collapse
|
49
|
Kostrubiec V, Zanone PG, Fuchs A, Kelso JAS. Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner-experimental evidence and theoretical model. Front Hum Neurosci 2012; 6:222. [PMID: 22876227 PMCID: PMC3411071 DOI: 10.3389/fnhum.2012.00222] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022] Open
Abstract
Using an approach that combines experimental studies of bimanual movements to visual stimuli and theoretical modeling, the present paper develops a dynamical account of sensorimotor learning, that is, how new skills are acquired and old ones modified. A significant aspect of our approach is the focus on the individual learner as the basic unit of analysis, in particular the quantification of predispositions and capabilities that the individual learner brings to the learning environment. Such predispositions constitute the learner's behavioral repertoire, captured here theoretically as a dynamical landscape (“intrinsic dynamics”). The learning process is demonstrated to not only lead to a relatively permanent improvement of performance in the required task—the usual outcome—but also to alter the individual's entire repertoire. Changes in the dynamical landscape due to learning are shown to result from two basic mechanisms or “routes”: bifurcation and shift. Which mechanism is selected depends the initial individual repertoire before new learning begins. Both bifurcation and shift mechanisms are accommodated by a dynamical model, a relatively straightforward development of the well-established HKB model of movement coordination. Model simulations show that although environmental or task demands may be met equally well using either mechanism, the bifurcation route results in greater stabilization of the to-be-learned behavior. Thus, stability not (or not only) error is demonstrated to be the basis of selection, both of a new pattern of behavior and the path (smooth shift versus abrupt qualitative change) that learning takes. In line with these results, recent neurophysiological evidence indicates that stability is a relevant feature around which brain activity is organized while an individual performs a coordination task. Finally, we explore the consequences of the dynamical approach to learning for theories of biological change.
Collapse
|
50
|
Banerjee A, Tognoli E, Kelso JAS, Jirsa VK. Spatiotemporal re-organization of large-scale neural assemblies underlies bimanual coordination. Neuroimage 2012; 62:1582-92. [PMID: 22634864 DOI: 10.1016/j.neuroimage.2012.05.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 11/19/2022] Open
Abstract
Bimanual coordination engages a distributed network of brain areas, the spatiotemporal organization of which has given rise to intense debates. Do bimanual movements require information processing in the same set of brain areas that are engaged by movements of the individual components (left and right hands)? Or is it necessary that other brain areas are recruited to help in the act of coordination? These two possibilities are often considered as mutually exclusive, with studies yielding support for one or the other depending on techniques and hypotheses. However, as yet there is no account of how the two views may work together dynamically. Using the method of Mode-Level Cognitive Subtraction (MLCS) on high density EEG recorded during unimanual and bimanual movements, we expose spatiotemporal reorganization of large-scale cortical networks during stable inphase and antiphase coordination and transitions between them. During execution of stable bimanual coordination patterns, neural dynamics were dominated by temporal modulation of unimanual networks. At instability and transition, there was evidence for recruitment of additional areas. Our study provides a framework to quantify large-scale network mechanisms underlying complex cognitive tasks often studied with macroscopic neurophysiological recordings.
Collapse
Affiliation(s)
- Arpan Banerjee
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | |
Collapse
|