1
|
Metz P, Nap J. A transgene-centred approach to the biosafety of transgenic plants: overview of selection and reporter genes. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/plb.1997.46.1.25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Jones JD, Carland FM, Maliga P, Dooner HK. Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science 2010; 244:204-7. [PMID: 17835353 DOI: 10.1126/science.244.4901.204] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A bacterial streptomycin resistance gene (SPT) was engineered to make it possible to detect visually the transposition of the maize transposon Activator (Ac) in tobacco. In the presence of streptomycin, transgenic seedlings carrying the SPT gene appear green, whereas those carrying an SPT:: Ac construct display clones of green cells on a white background. Fully green seedlings arise in the progeny of SPT:: Ac transformants as a result of excision of Ac before fertilization. About half of these germinal revertants carry a transposed Ac element. Therefore, SPT:: Ac constitutes an efficient marker for selecting plants that have undergone transposition. In maize, there is a negative effect of increasing Ac dosage on the frequency and timing of Ac transposition. This negative effect is not observed in tobacco with the streptomycin variegation assay.
Collapse
|
3
|
|
4
|
Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:575-603. [PMID: 17309731 DOI: 10.1111/j.1467-7652.2006.00209.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cereal crops have been the primary targets for improvement by genetic transformation because of their worldwide importance for human consumption. For a long time, many of these important cereals were difficult to genetically engineer, mainly as a result of their inherent limitations associated with the resistance to Agrobacterium infection and their recalcitrance to in vitro regeneration. The delivery of foreign genes to rice plants via Agrobacterium tumefaciens has now become a routine technique. However, there are still serious handicaps with Agrobacterium-mediated transformation of other major cereals. In this paper, we review the pioneering efforts, existing problems and future prospects of Agrobacterium-mediated genetic transformation of major cereal crops, such as rice, maize, wheat, barley, sorghum and sugarcane.
Collapse
Affiliation(s)
- Ashok Kumar Shrawat
- Centre for Applied Plant Molecular Biology (AMP II), University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | | |
Collapse
|
5
|
Moreno JI, Martín R, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:451-63. [PMID: 15659103 DOI: 10.1111/j.1365-313x.2004.02311.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We found that a recessive mutation, shmt1-1, causes aberrant regulation of cell death resulting in chlorotic and necrotic lesion formation under a variety of environmental conditions. Salicylic acid-inducible genes and genes involved in H(2)O(2) detoxification were expressed constitutively in shmt1-1 plants in direct correlation with the severity of the lesions. The shmt1-1 mutants were more susceptible than control plants to infection with biotrophic and necrotrophic pathogens, developing severe infection symptoms in a high percentage of infected leaves. In addition, mutants carrying shmt1-1 or a loss-of-function shmt1-2 allele, were smaller and showed a greater loss of chlorophyll and greater accumulation of H(2)O(2) than wild-type plants when subjected to salt stress. SHMT1 was map-based cloned and found to encode a serine hydroxymetyltransferase (SHMT1) involved in the photorespiratory pathway. Our results indicate that this enzymatic activity plays a critical role in controlling the cell damage provoked by abiotic stresses such as high light and salt and in restricting pathogen-induced cell death, supporting the notion that photorespiration forms part of the dissipatory mechanisms of plants to minimize production of reactive oxygen species (ROS) at the chloroplast and to mitigate oxidative damage. Moreover, results shown here indicate that whereas production of ROS is an essential component of the hypersensitive defense response, the excessive accumulation of these toxic compounds impairs cell death containment and counteracts the effectiveness of the plant defenses to restrict pathogen infection.
Collapse
Affiliation(s)
- Juan Ignacio Moreno
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
6
|
Joersbo M. Advances in the selection of transgenic plants using non-antibiotic marker genes. PHYSIOLOGIA PLANTARUM 2001; 111:269-272. [PMID: 11240908 DOI: 10.1034/j.1399-3054.2001.1110301.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Production of transgenic plants started more than a decade ago, but it is still a time-consuming operation. One of the critical points is the selection procedure used for the recovery of transgenic shoots after transformation. Moreover, as more transgenic traits are to be incorporated into crops that already have been transformed, it is clear that there is a need for new methods with higher efficiencies. In this article, recently developed selection systems are reviewed. They differ from conventional selection techniques as they are based on supplementing the transgenic cells with a metabolic advantage rather than killing the non-transgenic cells. In many cases, these new selection systems have been found to be superior to conventional methods.
Collapse
Affiliation(s)
- Morten Joersbo
- Danisco Biotechnology, Langebrogade 1, DK-1001 Copenhagen K, Denmark
| |
Collapse
|
7
|
Bretagne-Sagnard B, Chupeau Y. Selection of transgenic flax plants is facilitated by spectinomycin. Transgenic Res 1996. [DOI: 10.1007/bf01969431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D, Gordon-Kamm B. Germline Transformation of Maize Following Manipulation of Chimeric Shoot Meristems. Nat Biotechnol 1995. [DOI: 10.1038/nbt0795-677] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Yoder JI, Goldsbrough AP. Transformation Systems for Generating Marker–Free Transgenic Plants. ACTA ACUST UNITED AC 1994. [DOI: 10.1038/nbt0394-263] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G. Bacterial Dihydrodipicolinate Synthase and Desensitized Aspartate Kinase: Two Novel Selectable Markers for Plant Transformation. Nat Biotechnol 1993. [DOI: 10.1038/nbt0693-715] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Walden R, Schell J. Techniques in plant molecular biology--progress and problems. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:563-76. [PMID: 2209611 DOI: 10.1111/j.1432-1033.1990.tb19262.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progress in plant molecular biology has been dependent on efficient methods of introducing foreign DNA into plant cells. Gene transfer into plant cells can be achieved by either direct uptake of DNA or the natural process of gene transfer carried out by the soil bacterium Agrobacterium. Versatile gene-transfer vectors have been developed for use with Agrobacterium and more recently vectors based on the genomes of plant viruses have become available. Using this technology the expression of foreign DNA, the functional analysis of plant DNA sequences, the investigation of the mechanism of viral DNA replication and cell to cell spread, as well as the study of transposition, can be carried out. In addition, the versatility of the gene-transfer vectors is such that they may be used to isolate genes not amenable to isolation using conventional protocols. This review concentrates on these aspects of plant molecular biology and discusses the limitations of the experimental systems that are currently available.
Collapse
Affiliation(s)
- R Walden
- Max-Planck-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
| | | |
Collapse
|
12
|
Guerineau F, Brooks L, Meadows J, Lucy A, Robinson C, Mullineaux P. Sulfonamide resistance gene for plant transformation. PLANT MOLECULAR BIOLOGY 1990; 15:127-36. [PMID: 2103427 DOI: 10.1007/bf00017730] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The sulfonamide resistance gene from plasmid R46 encodes for a mutated dihydropteroate synthase insensitive to inhibition by sulfonamides. Its coding sequence was fused to the pea ribulose bisphosphate carboxylase/oxygenase transit peptide sequence. Incubation of isolated chloroplasts with the fusion protein synthesised in vitro, showed that the bacterial enzyme was transported to the chloroplast stroma and processed into a mature form. Expression of the gene fusion in transgenic plants resulted in a high level of resistance to sulfonamides. Direct selection of transformed shoots on leaf explants was efficient using sulfonamides as sole selective agents. Transformed shoots rooted normally on sulfonamides at concentrations toxic for untransformed ones. Sulfonamide resistance was transmitted to the progeny of transformed plants as a single Mendelian dominant character. These results demonstrate that this chimeric gene can be used as an efficient and versatile selectable marker for plant transformation.
Collapse
Affiliation(s)
- F Guerineau
- John Innes Institute, Institute of Plant Science Research, Norwich, UK
| | | | | | | | | | | |
Collapse
|
13
|
Svab Z, Harper EC, Jones JD, Maliga P. Aminoglycoside-3''-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 1990; 14:197-205. [PMID: 1966273 DOI: 10.1007/bf00018560] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The bacterial gene aadA encodes the enzyme aminoglycoside-3"-adenyltransferase that confers resistance to spectinomycin and streptomycin in Escherichia coli. Chimeric genes have been constructed for expression in plants, and were introduced into Nicotiana tabacum by Agrobacterium binary transformation vectors. Spectinomycin or streptomycin in selective concentrations prevent greening of N. tabacum calli. Transgenic clones, however, formed green calli on selective media containing spectinomycin, streptomycin, or both drugs. Resistance was inherited as a dominant Mendelian trait in the seed progeny. Resistance conferred by the chimeric aadA gene can be used as a color marker similar to the resistance conferred by the streptomycin phosphotransferase gene to streptomycin.
Collapse
Affiliation(s)
- Z Svab
- DNA Plant Technology Corporation, Oakland, CA 94608
| | | | | | | |
Collapse
|
14
|
|
15
|
Perez P, Tiraby G, Kallerhoff J, Perret J. Phleomycin resistance as a dominant selectable marker for plant cell transformation. PLANT MOLECULAR BIOLOGY 1989; 13:365-73. [PMID: 2485087 DOI: 10.1007/bf00015548] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Tobacco cells are sensitive to bleomycin and phleomycin. The Tn5 and the Streptoalloteichus hindustanus (Sh) bleomycin resistance ('Ble') genes conferring resistance to these antibiotics have each been inserted into two plant expression vectors. They are flanked by the nopaline synthase (nos) or the cauliflower mosaic virus (CaMV) 35S promoters on one side, and by the nos polyadenylation signal on the other. These four chimaeric genes were introduced into the binary transformation vector pGA 492, which were thereafter mobilized into Agrobacterium tumefaciens strain LBA 4404. The resulting strains were used to transform Nicotiana tabacum cv. Xanthi nc using the leaf disc transformation procedure. In all cases, phleomycin- and bleomycin-resistant tobacco plants were regenerated from transformed cells under selective conditions; however, the highest frequency of rooted plants was obtained when transformation was carried out with the 'Sh Ble' gene under the control of the 35S promoter. Phleomycin resistance was stably transmitted to sexual offspring as a dominant nuclear trait as confirmed by Southern blotting.
Collapse
Affiliation(s)
- P Perez
- BIOSEM, Laboratoire de biologie moléculaire et cellulaire, Aubiere, France
| | | | | | | |
Collapse
|
16
|
Maliga P, Svab Z, Harper EC, Jones JD. Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:456-9. [PMID: 2851095 DOI: 10.1007/bf00330480] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that a chimeric streptomycin phosphotransferase (SPT) gene can function as a dominant marker for plant cell transformation. The SPT marker previously described by Jones and co-workers has a limited value since it conferred a useful level of resistance only to a fraction (10%) of Nicotiana plumbaginifolia transgenic lines. Expression of resistance was species specific: no such resistant transformants were found in N. tabacum. In this paper we describe an improved SPT construct that utilizes a mutant Tn5 SPT gene. The mutant gene, SPT*, encodes a protein with a two amino acid deletion close to its COOH-terminus. In N. tabacum cell culture the efficiency of transformation with the improved streptomycin resistance marker was comparable to kanamycin resistance. When the chimeric SPT* gene was introduced linked to a kanamycin resistance gene, streptomycin resistance was expressed in most of the transgenic N. tabacum lines.
Collapse
Affiliation(s)
- P Maliga
- Advanced Genetic Sciences Inc., Oakland, CA 94608
| | | | | | | |
Collapse
|
17
|
Genetic Engineering for Crop Improvement. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/978-1-4613-1037-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|