1
|
Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions. Sci Rep 2015; 5:17783. [PMID: 26634994 PMCID: PMC4669503 DOI: 10.1038/srep17783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Crassulacean acid metabolism (CAM) is widespread in terrestrial and aquatic species, plastic in response to environmental changes. Isoetes L. is one of the earliest basal vascular plants and CAM is popular in this genus. Isoetes sinensis Palmer is an amphibious species, alternating frequently between terrestrial and aquatic environments. Given this, we investigated and compared photosynthetic characteristics over a diurnal cycle under submerged condition (SC) and terrestrial condition (TC). The results suggest that I. sinensis possesses a stronger CAM capacity under SC. Compared with under TC, titratable acidity levels and organic acid concentrations were more enriched under SC, whereas soluble sugar or starch and protein levels were lower under SC. Transcript analyses for nine photosynthetic genes revealed that CAM-associated genes possessed high transcripts under SC, but C3-related transcripts were highly expressed under TC. In addition, the enzyme activity measurements demonstrated that PEPC activity over a diurnal cycle was slightly higher under SC, whereas Rubisco activity during the daytime was greater under TC. This comprehensive study probably facilitates general understandings about the CAM photosynthetic characteristics of Isoetes in response to the environmental changes.
Collapse
|
2
|
Robe WE, Griffiths H. Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations. Oecologia 1990; 85:128-136. [DOI: 10.1007/bf00317353] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1990] [Accepted: 06/29/1990] [Indexed: 10/26/2022]
|
3
|
Raven JA, Handley LL, Macfarlane JJ, McInroy S, McKenzie L, Richards JH, Samuelsson G. The role of CO 2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: a review, with new data on Eriocaulon decangulare L. THE NEW PHYTOLOGIST 1988; 108:125-148. [PMID: 33874162 DOI: 10.1111/j.1469-8137.1988.tb03690.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The isoetid life-form was originally defined on morphological grounds; subsequent physiological investigations showed that all of the isoetids examined took up a large fraction of the inorganic C fixed in their leaves from the root medium under natural conditions, and that some of them carried out much of their assimilation of inorganic C via a CAM-like mechanism. Root-dominated uptake of inorganic C appeared to be unique to, and ubiquitous in, the isoetids. I However, a large capacity for CAM-like metabolism in submerged vascular plants is not universal in isoetids, nor is it restricted to this life-form, being also found in Crassulaa aquatica. The work described here shows that submerged specimens of the North American Eriocaulon decangulare have a high fraction of their dry weight in the root system, a trait characteristic of isoetids but uncommon in other submerged vascular plants. E. decangulare has vesicular-arbuscular mycorrhizas, as do other flowering plant isoetids hut not, generally, submerged Isoetes spp. Under conditions of natural supply of inorganic C, E. decangulare, like other isoetids, takes up most of its inorganic C through its roots. Uptake of inorganic C by both roots and shoots involves CO2 rather than HCO3 : photosynthesis at high external pH values does not exceed the rate of uncatalysed HCO3 - to CO2 conversion in the medium and there is no detectable extracellular carbonic anhydrase activity. Measurements of titratable acidity and of malate content of leaves sampled at dawn and at dusk showed that E. decangulare, growing and tested under either emersed or submersed conditions, did not exhibit CAM-like behaviour. CAM was also absent from three non-isoetid aquatic macrophytes (Amphibolic antarctica, Eeklonia radiata and Vallisneria spiralis) which were examined. E. decangulare thus resembles all other isoetids tested in acquiring much of its inorganic C via the root system. E. decangulare also resembles most of the isoetids which are not members of the Isoetaceae (e.g.) E. septangulare, Lobelia dortmanna and Subularia aquatica) but differs from submerged Isoetaceae and Littorella uniflora in lacking CAM. The ecological significance of uptake of CO2 via the roots and, where it occurs, of CAM in isoetids may be related to either inorganic C or, via improved N use efficiency, inorganic C as a limiting resource. The isoetid life-forms has evolved independently in at last five different families of vascular plants; it probably derived fairly immediately from terrestrial or amphibious ancestors with a similar rosette form. Emergent Isoetaceae with acquisition of CO2 via roots and CAM probably evolved from submerged isoetids. CONTENTS Summary 123 I. Introduction 126 II. Material and Methods 127 III. Results and Discussion 129 IV. Conclusions 142 Acknowledgements 142 References 143.
Collapse
Affiliation(s)
- John A Raven
- Department of Biological Sciences, Florida International University, Tamiami Campus, Miami, Florida 33176, U.S.A
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | - Linda L Handley
- Department of Biological Sciences, Florida International University, Tamiami Campus, Miami, Florida 33176, U.S.A
- Drinking Water Research Center, Florida International University, Tamiami Campus, Miami, Florida 33176, U.S.A
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | - Jeffrey J Macfarlane
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K
- Roseworthy Agricultural College, Roseworthy, S.A. 5371, Australia†
| | - Shona McInroy
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | - Lewis McKenzie
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | - Jennifer H Richards
- Department of Biological Sciences, Florida International University, Tamiami Campus, Miami, Florida 33176, U.S.A
| | - Goran Samuelsson
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K
- Department of Plant Physiology, University of Umea, S-91087 Umea, Sweden‡
| |
Collapse
|
6
|
Keeley JE. Crassulacean acid metabolism in the seasonally submerged aquatic Isoetes howellii. Oecologia 1983; 58:57-62. [PMID: 28310647 DOI: 10.1007/bf00384542] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1982] [Indexed: 10/26/2022]
Abstract
Evidence to date is consistent with the hypothesis that the submerged aquatic Isoetes howellii Engelmann possesses crassulacean acid metabolism. Quantitative 14C uptake studies indicate that CO2 assimilation in both the light and dark are functions of pH and total inorganic carbon level. In both the light and dark, maximum uptake rates in 0.6 mM NaHCO3 were double the rates in 0.3 mM NaHCO3. At both carbon levels there was a large drop in carbon assimilation rate between pH 6 and 8. In nature water pH and inorganic carbon level fluctuated diurnally thus complicating the determination of the contribution of light vs dark CO2 uptake to the total carbon gain. On a sunny day between 0600 and 1200 h water chemistry changed markedly with ∼40% reduction in total carbon, ∼2 pH unit rise resulting from ∼100% depletion of free CO2. Under such conditions daytime deacidification in Isoetes leaves was 88% complete by noon. In contrast, on an overcast day, reduction of carbon in the water was much slower, deacidification was only 46% complete by noon and substantial malic acid levels remained in the leaves at the end of the day. Upon emergence crassulacean acid metabolism was largely lost in Isoetes leaves. Preliminary estimates suggest that under natural submerged conditions, early morning photosynthetic rates may be substantially higher than dark CO2 uptake rates, though uptake rates throughout much of the day could be substantially lower than nightime CO2 assimilation.
Collapse
Affiliation(s)
- Jon E Keeley
- Department of Biology, Occidental College, 90041, Los Angeles, CA, USA
| |
Collapse
|
7
|
Raven J, Beardall J, Griffiths H. Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia 1982; 53:68-78. [DOI: 10.1007/bf00377138] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1981] [Indexed: 10/26/2022]
|