1
|
Inaba-Hasegawa K, Ohmura A, Nomura M, Sugiura M. Development of an In Vitro Chloroplast Splicing System: Sequences Required for Correct pre-mRNA Splicing. PLANT & CELL PHYSIOLOGY 2021; 62:1311-1320. [PMID: 34180531 PMCID: PMC8579278 DOI: 10.1093/pcp/pcab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/01/2023]
Abstract
Chloroplast genomes in land plants include approximately 20 intron-containing genes. Most of the introns are similar to the group II introns found in fungi, algae and some bacteria, but no self-splicing has been reported. To analyze splicing reactions in chloroplasts, we developed a tobacco (Nicotiana tabacum) chloroplast-based in vitro system. We optimized the splicing reaction using atpF precursor messenger RNA (pre-mRNA). Our system requires a high ATP concentration, whereas ATP is not necessary for self-splicing group II introns. Self-splicing group II introns possess two exon-binding sites (EBS1 and 2) complementary to two intron-binding sites (IBS1 and 2) in the 3' end of 5' exons, which are involved in 5' splice-site selection. Using our in vitro system and atpF pre-mRNA, we analyzed short sequences corresponding to the above EBSs and IBSs. Mutation analyses revealed that EBS1-IBS1 pairing is essential, while EBS2-IBS2 pairing is important but not crucial for splicing. The first 3' exon nucleotide determines the 3' splice sites of self-splicing introns. However, mutations to this nucleotide in atpF pre-mRNA did not affect splicing. This result suggests that the mechanism underlying chloroplast pre-mRNA splicing differs partly from that mediating the self-splicing of group II introns.
Collapse
Affiliation(s)
- Keiko Inaba-Hasegawa
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masayo Nomura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masahiro Sugiura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Covshoff S, Majeran W, Liu P, Kolkman JM, van Wijk KJ, Brutnell TP. Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant. PLANT PHYSIOLOGY 2008; 146:1469-81. [PMID: 18258693 PMCID: PMC2287327 DOI: 10.1104/pp.107.113423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 02/05/2008] [Indexed: 05/19/2023]
Abstract
During maize (Zea mays) C(4) differentiation, mesophyll (M) and bundle sheath (BS) cells accumulate distinct sets of photosynthetic enzymes, with very low photosystem II (PSII) content in BS chloroplasts. Consequently, there is little linear electron transport in the BS and ATP is generated by cyclic electron flow. In contrast, M thylakoids are very similar to those of C(3) plants and produce the ATP and NADPH that drive metabolic activities. Regulation of this differentiation process is poorly understood, but involves expression and coordination of nuclear and plastid genomes. Here, we identify a recessive allele of the maize high chlorophyll fluorescence (Hcf136) homolog that in Arabidopsis (Arabidopsis thaliana) functions as a PSII stability or assembly factor located in the thylakoid lumen. Proteome analysis of the thylakoids and electron microscopy reveal that Zmhcf136 lacks PSII complexes and grana thylakoids in M chloroplasts, consistent with the previously defined Arabidopsis function. Interestingly, hcf136 is also defective in processing the full-length psbB-psbT-psbH-petB-petD polycistron specifically in M chloroplasts. To determine whether the loss of PSII in M cells affects C(4) differentiation, we performed cell-type-specific transcript analysis of hcf136 and wild-type seedlings. The results indicate that M and BS cells respond uniquely to the loss of PSII, with little overlap in gene expression changes between data sets. These results are discussed in the context of signals that may drive differential gene expression in C(4) photosynthesis.
Collapse
Affiliation(s)
- Sarah Covshoff
- Department of Plant Biology , Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
3
|
del Campo EM, Casano LM. Degradation of plastid unspliced transcripts and lariat group II introns. Biochimie 2008; 90:474-83. [DOI: 10.1016/j.biochi.2007.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/15/2007] [Indexed: 11/16/2022]
|
4
|
Li-Pook-Than J, Carrillo C, Bonen L. Variation in mitochondrial transcript profiles of protein-coding genes during early germination and seedling development in wheat. Curr Genet 2004; 46:374-80. [PMID: 15538573 DOI: 10.1007/s00294-004-0544-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/23/2004] [Accepted: 09/25/2004] [Indexed: 10/26/2022]
Abstract
We examined RNA profiles of wheat mitochondrial genes during the developmental period when seeds leave dormancy, germinate and develop into seedlings. Mitochondrial RNAs isolated from 0 h to 6 days post-imbibition were subjected to Northern analysis, using coding-specific and intron-specific probes. Stable, edited mRNAs were observed in dormant seeds and precursor RNAs were subsequently detected early in embryo germination. The respiratory chain genes (nad7, cox1, cox2, atp6) showed mRNA profiles which paralleled those of the ribosomal RNAs, whereas ribosomal protein genes (rps2, rps3, rps7) had proportionately lower steady-state mRNA levels in later stages of seedling development. The relative levels of precursors compared with the respective mRNAs shifted down during development, consistent with transcription outpacing RNA processing in the early stages but co-ordination being more effective several days after imbibition. In the case of multiply split genes containing group II introns, complex patterns of splicing intermediates were observed, suggesting a lack of strict polarity of intron removal, although splicing efficiency appears to differ among introns. Excised intron RNAs typically are relatively more abundant in embryos than seedlings. These observations are consistent with a transient imbalance of RNA-processing machinery at the onset of seed germination, which is a period of rapid mitochondrial biogenesis.
Collapse
|
5
|
Vogel J, Börner T. Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J 2002; 21:3794-803. [PMID: 12110591 PMCID: PMC126105 DOI: 10.1093/emboj/cdf359] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lariat formation has been studied intensively only with a few self-splicing group II introns, and little is known about how the numerous diverse introns in plant organelles are excised. Several of these introns have branch-points that are not a single bulge but are adjoined by A:A, A:C, A:G and G:G pairs. Using a highly sensitive in vivo approach, we demonstrate that all but one of the barley chloroplast introns splice via the common pathway that produces a branched product. RNA editing does not improve domain 5 and 6 structures of these introns. The conserved branch-point in tobacco rpl16 is chosen even if an adjacent unpaired adenosine is available, suggesting that spatial arrangements in domain 6 determine correct branch-point selection. Lariats were not detected for the chloroplast trnV intron, which lacks an unpaired adenosine in domain 6. Instead, this intron is released as linear molecules that undergo further polyadenylation. trnV, which is conserved throughout plant evolution, constitutes the first example of naturally occurring hydrolytic group II intron splicing in vivo.
Collapse
Affiliation(s)
- Jörg Vogel
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, Husargatan 3, S-751 24 Uppsala, Sweden and
Institute of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany Corresponding author e-mail:
| | - Thomas Börner
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, Husargatan 3, S-751 24 Uppsala, Sweden and
Institute of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany Corresponding author e-mail:
| |
Collapse
|
6
|
del Campo EM, Sabater B, Martín M. Transcripts of the ndhH-D operon of barley plastids: possible role of unedited site III in splicing of the ndhA intron. Nucleic Acids Res 2000; 28:1092-8. [PMID: 10666448 PMCID: PMC102609 DOI: 10.1093/nar/28.5.1092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plastid ndhH-D operon produces several transcripts containing ndhA sequence with and without its group II intron. After sequencing an 8125 bp fragment of barley plastid DNA including the ndhH-D operon, we investigated the editing-splicing status of transcripts in the range 1.0-7.8 kb. Reverse transcription and sequencing of RNA bands separated by electrophoresis were used to determine C-->U editing sites. Sites I, II and IV of ndhA and site V of ndhD were edited in all transcripts analysed and, probably, were edited before any splicing had taken place. In contrast, site III of ndhA (13 bp from the 5'-end base of the second exon) was not edited in transcripts containing the intron (including the 1.7 kb intermediary transcript consisting of the intron and the second exon) but was edited in all transcripts lacking the ndhA intron. Comparison of the secondary structures of the ndhA intron and intron-second exon intermediate suggests that G pairing prevents editing of site III in transcripts containing the intron and maintains the secondary structure required for splicing. Splicing of the ndhA intron releases the site III C from pairing and, probably, brings it close to cis-acting elements for editing upstream in the first exon.
Collapse
Affiliation(s)
- E M del Campo
- Department of Plant Biology, Universidad de Alcalá, Alcalá de Henares, 28871-Madrid, Spain
| | | | | |
Collapse
|
7
|
Holländer V, Kück U. Group II intron splicing in chloroplasts: identificationof mutations determining intron stability and fate of exon RNA. Nucleic Acids Res 1999; 27:2345-53. [PMID: 10325424 PMCID: PMC148801 DOI: 10.1093/nar/27.11.2345] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to investigate in vivo splicing of group II introns in chloroplasts, we previously have integrated the mitochondrial intron rI1 from the green alga Scenedesmus obliquus into the Chlamydomonas chloroplast tscA gene. This construct allows a functional analysis of conserved intron sequences in vivo, since intron rI1 is correctly spliced in chloroplasts. Using site-directed mutagenesis, deletions of the conserved intron domains V and VI were performed. In another set of experiments, each possible substitution of the strictly conserved first intron nucleotide G1 was generated, as well as each possible single and double mutation of the tertiary base pairing gamma-gamma ' involved in the formation of the intron's tertiary RNA structure. In most cases, the intron mutations showed the same effect on in vivo intron splicing efficiency as they did on the in vitro self-splicing reaction, since catalytic activity is provided by the intron RNA itself. In vivo, all mutations have additional effects on the chimeric tscA -rI1 RNA, most probably due to the role played by trans -acting factors in intron processing. Substitutions of the gamma-gamma ' base pair lead to an accumulation of excised intron RNA, since intron stability is increased. In sharp contrast to autocatalytic splicing, all point mutations result in a complete loss of exon RNA, although the spliced intron accumulates to high levels. Intron degradation and exon ligation only occur in double mutants with restored base pairing between the gamma and gamma' sites. Therefore, we conclude that intron degradation, as well as the ligation of exon-exon molecules, depends on the tertiary intron structure. Furthermore, our data suggest that intron excision proceeds in vivo independent of ligation of exon-exon molecules.
Collapse
Affiliation(s)
- V Holländer
- Lehrstuhl für Allgemeine Botanik, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
8
|
Vogel J, Hess WR, Börner T. Precise branch point mapping and quantification of splicing intermediates. Nucleic Acids Res 1997; 25:2030-1. [PMID: 9115373 PMCID: PMC146694 DOI: 10.1093/nar/25.10.2030] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lariat intermediates of a group II intron were investigated via RT-PCR. Several reverse transcriptases appeared capable of reading through a branched nucleotide. A new method has been established that yields precise information about the location of the branch point within an intron. As an extension of our approach, antisense transcripts of the previously cloned PCR products were successfully used in RNase Protection Assays, providing a tool for quantification of splicing intermediates. Application of the method presented to other self-splicing introns as well as introns in nuclear pre-mRNAs is envisaged.
Collapse
Affiliation(s)
- J Vogel
- Department of Biology, Humboldt University, Chausseestrasse 117, 10115 Berlin, Germany. joerg=
| | | | | |
Collapse
|
9
|
Sugita M, Sugiura M. Regulation of gene expression in chloroplasts of higher plants. PLANT MOLECULAR BIOLOGY 1996; 32:315-26. [PMID: 8980485 DOI: 10.1007/bf00039388] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chloroplasts contain their own genetic system which has a number of prokaryotic as well as some eukaryotic features. Most chloroplast genes of higher plants are organized in clusters and are cotranscribed as polycistronic pre-RNAs which are generally processes into many shorter overlapping RNA species, each of which accumulates of steady-state RNA levels. This indicates that posttranscriptional RNA processing of primary transcripts is an important step in the control of chloroplast gene expression. Chloroplast RNA processing steps include RNA cleavage/trimming, RNA splicing, ENA editing and RNA stabilization. Several chloroplast genes are interrupted by introns and therefore require processing for gene function. In tobacco chloroplasts, 18 genes contain introns, six for tRNA genes and 12 for protein-encoding genes. A number of specific proteins and RNA factors are believed to be involved in splicing and maturation of pre-RNAs in chloroplasts. Processing enzymes and RNA-binding proteins which could be involved in posttranscriptional steps have been identified in the last several years. Our current knowledge of the regulation of gene expression in chloroplasts of higher plants is overviewed and further studies on this matter are also considered.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
10
|
Deshpande NN, Hollingsworth M, Herrin DL. The atpF group-II intron-containing gene from spinach chloroplasts is not spliced in transgenic Chlamydomonas chloroplasts. Curr Genet 1995; 28:122-7. [PMID: 8590462 DOI: 10.1007/bf00315777] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to determine whether the group-II trans-splicing machinery of the chloroplast of Chlamydomonas reinhardtii can splice a heterologous group-II cis intron, the atpF gene of spinach was transferred into the chloroplast genome of C. reinhardtii using the atpX expression vector. The atpF gene contains a group-II intron which, like other higher plant chloroplast introns, does not self-splice in vitro. The chimeric transgene was expressed at high levels, based on the accumulation of the precursor; however, spliced products could not be detected by Northern blotting, or by RT-PCR coupled with Southern-blot hybridization of the amplified products with an exon-junction probe. These results indicate that the spinach atpF intron is not spliced in transgenic C. reinhardtii chloroplasts. Thus, splicing of chloroplast introns mediated by cellular factors may be species-specific; alternately, the group-II splicing machinery of C. reinhardtii is specific for trans spliced introns.
Collapse
Affiliation(s)
- N N Deshpande
- Department of Botany, University of Texas at Austin 78713, USA
| | | | | |
Collapse
|