1
|
High-Efficiency Electroporation for Genetic Improvement of Fungal Strains. Methods Mol Biol 2021. [PMID: 33977448 DOI: 10.1007/978-1-0716-1358-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Electroporation is a method for the introduction of molecules (usually nucleic acids) into a cell, consisting of submitting the cells to high-voltage and short electric pulses in the presence of the exogenous DNA/molecule. It is a versatile method, adaptable to different types of cells, from bacteria to cultured cells to higher eukaryotes, and thus has applications in many diverse fields, such as environmental biology, biotechnology, genetic engineering, and medicine. Electroporation has some advantages over other genetic transformation strategies, including the simplicity of the method, a wide range of adjustable parameters (possibility of optimization), high reproducibility and avoidance of the use of chemicals toxic to cells. Here we describe an optimized electroporation procedure for the industrially important fungus Acremonium chrysogenum, using germinated conidia and fragmented young mycelium. In both cases, the transformation efficiency was higher compared to the conventional polyethylene glycol (PEG)-mediated transformation of protoplasts.
Collapse
|
2
|
Non-Transgenic CRISPR-Mediated Knockout of Entire Ergot Alkaloid Gene Clusters in Slow-Growing Asexual Polyploid Fungi. Toxins (Basel) 2021; 13:toxins13020153. [PMID: 33669319 PMCID: PMC7922272 DOI: 10.3390/toxins13020153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022] Open
Abstract
The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome sequencing revealed clusters of ergot alkaloid biosynthesis (EAS) genes in Epichloë coenophiala strain e19 from tall fescue (Lolium arundinaceum) and Epichloë hybrida Lp1 from perennial ryegrass (Lolium perenne). The two homeologous clusters in E. coenophiala-a triploid hybrid species-were 196 kb (EAS1) and 75 kb (EAS2), and the E. hybrida EAS cluster was 83 kb. As a CRISPR-based approach to target these clusters, the fungi were transformed with ribonucleoprotein (RNP) complexes of modified Cas9 nuclease (Cas9-2NLS) and pairs of single guide RNAs (sgRNAs), plus a transiently selected plasmid. In E. coenophiala, the procedure generated deletions of EAS1 and EAS2 separately, as well as both clusters simultaneously. The technique also gave deletions of the EAS cluster in E. hybrida and of individual alkaloid biosynthesis genes (dmaW and lolC) that had previously proved difficult to delete in E. coenophiala. Thus, this facile CRISPR RNP approach readily generates non-transgenic endophytes without toxin genes for use in research and forage cultivar improvement.
Collapse
|
3
|
Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum. Folia Microbiol (Praha) 2018; 64:33-39. [DOI: 10.1007/s12223-018-0625-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
|
4
|
Chromosome-End Knockoff Strategy to Reshape Alkaloid Profiles of a Fungal Endophyte. G3-GENES GENOMES GENETICS 2016; 6:2601-10. [PMID: 27334939 PMCID: PMC4978913 DOI: 10.1534/g3.116.029686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular genetic techniques to precisely eliminate genes in asexual filamentous fungi require the introduction of a marker gene into the target genome. We developed a novel strategy to eliminate genes or gene clusters located in subterminal regions of chromosomes, and then eliminate the marker gene and vector backbone used in the transformation procedure. Because many toxin gene clusters are subterminal, this method is particularly suited to generating nontoxic fungal strains. We tested this technique on Epichloë coenophiala, a seed-transmissible symbiotic fungus (endophyte) of the important forage grass, tall fescue (Lolium arundinaceum). The endophyte is necessary for maximal productivity and sustainability of this grass but can produce ergot alkaloids such as ergovaline, which are toxic to livestock. The genome sequence of E. coenophiala strain e19 revealed two paralogous ergot alkaloid biosynthesis gene clusters, designated EAS1 and EAS2. EAS1 was apparently subterminal, and the lpsB copy in EAS2 had a frame-shift mutation. We designed a vector with a fungal-active hygromycin phosphotransferase gene (hph), an lpsA1 gene fragment for homologous recombination at the telomere-distal end of EAS1, and a telomere repeat array positioned to drive spontaneous loss of hph and other vector sequences, and to stabilize the new chromosome end. We transformed E. coenophiala with this vector, then selected “knockoff” endophyte strains, confirmed by genome sequencing to lack 162 kb of a chromosome end including most of EAS1, and also to lack vector sequences. These ∆EAS1 knockoff strains produced no detectable ergovaline, whereas complementation with functional lpsB restored ergovaline production.
Collapse
|
5
|
|
6
|
Shoji JY, Charlton ND, Yi M, Young CA, Craven KD. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes. PLoS One 2015; 10:e0121875. [PMID: 25837972 PMCID: PMC4383479 DOI: 10.1371/journal.pone.0121875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/18/2015] [Indexed: 01/18/2023] Open
Abstract
Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.
Collapse
Affiliation(s)
- Jun-ya Shoji
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Nikki D. Charlton
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Mihwa Yi
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Carolyn A. Young
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Kelly D. Craven
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
- * E-mail:
| |
Collapse
|
7
|
Pan J, Bhardwaj M, Nagabhyru P, Grossman RB, Schardl CL. Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota. PLoS One 2014; 9:e115590. [PMID: 25531527 PMCID: PMC4274035 DOI: 10.1371/journal.pone.0115590] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/29/2014] [Indexed: 11/19/2022] Open
Abstract
The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline), -NHCH3 (loline), -N(CH3)2 (N-methylloline), -N(CH3)Ac (N-acetylloline), -NHAc (N-acetylnorloline), and -N(CH3)CHO (N-formylloline). Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL) gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase) and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for the chemical diversification steps in symbio.
Collapse
Affiliation(s)
- Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Minakshi Bhardwaj
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher L. Schardl
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pan J, Bhardwaj M, Faulkner JR, Nagabhyru P, Charlton ND, Higashi RM, Miller AF, Young CA, Grossman RB, Schardl CL. Ether bridge formation in loline alkaloid biosynthesis. PHYTOCHEMISTRY 2014; 98:60-8. [PMID: 24374065 PMCID: PMC3929955 DOI: 10.1016/j.phytochem.2013.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/01/2013] [Accepted: 11/21/2013] [Indexed: 05/18/2023]
Abstract
Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of an alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine.
Collapse
Affiliation(s)
- Juan Pan
- Department of Plant Pathology, 201F Plant Sciences Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Minakshi Bhardwaj
- Department of Chemistry, 339 Chemistry-Physics Building, 505 Rose Street, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Jerome R Faulkner
- Department of Plant Pathology, 201F Plant Sciences Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, 201F Plant Sciences Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Nikki D Charlton
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, OK 73401-2124, USA
| | - Richard M Higashi
- Graduate Center for Toxicology, 521 Biopharmacy Building, 1000 South Limestone, University of Kentucky, Lexington, KY 40536-0293, USA
| | - Anne-Frances Miller
- Department of Chemistry, 339 Chemistry-Physics Building, 505 Rose Street, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Carolyn A Young
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, OK 73401-2124, USA
| | - Robert B Grossman
- Department of Chemistry, 339 Chemistry-Physics Building, 505 Rose Street, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Christopher L Schardl
- Department of Plant Pathology, 201F Plant Sciences Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
9
|
Fleetwood DJ, Khan AK, Johnson RD, Young CA, Mittal S, Wrenn RE, Hesse U, Foster SJ, Schardl CL, Scott B. Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses. Genome Biol Evol 2011; 3:1253-64. [PMID: 21948396 PMCID: PMC3227409 DOI: 10.1093/gbe/evr098] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2011] [Indexed: 12/20/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are abundant repeat elements in plant and animal genomes; however, there are few analyses of these elements in fungal genomes. Analysis of the draft genome sequence of the fungal endophyte Epichloë festucae revealed 13 MITE families that make up almost 1% of the E. festucae genome, and relics of putative autonomous parent elements were identified for three families. Sequence and DNA hybridization analyses suggest that at least some of the MITEs identified in the study were active early in the evolution of Epichloë but are not found in closely related genera. Analysis of MITE integration sites showed that these elements have a moderate integration site preference for 5' genic regions of the E. festucae genome and are particularly enriched near genes for secondary metabolism. Copies of the EFT-3m/Toru element appear to have mediated recombination events that may have abolished synthesis of two fungal alkaloids in different epichloae. This work provides insight into the potential impact of MITEs on epichloae evolution and provides a foundation for analysis in other fungal genomes.
Collapse
Affiliation(s)
- Damien J Fleetwood
- Forage Biotechnology Section, AgResearch, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Belesky DP, Bacon CW. Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. TOXIN REV 2009. [DOI: 10.1080/15569540903082143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Young CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B. Indole-diterpene biosynthetic capability of epichloë endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 2009; 75:2200-11. [PMID: 19181837 PMCID: PMC2663189 DOI: 10.1128/aem.00953-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 01/20/2009] [Indexed: 11/20/2022] Open
Abstract
Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement.
Collapse
Affiliation(s)
- Carolyn A Young
- Institute of Molecular BioSciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
12
|
Spiering MJ, Faulkner JR, Zhang DX, Machado C, Grossman RB, Schardl CL. Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genet Biol 2008; 45:1307-14. [DOI: 10.1016/j.fgb.2008.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/28/2008] [Accepted: 07/01/2008] [Indexed: 11/25/2022]
|
13
|
Mirlohi A, Sabzalian MR, Sharifnabi B, Nekoui MK. Widespread occurrence of Neotyphodium-like endophyte in populations of Bromus tomentellus Boiss. in Iran. FEMS Microbiol Lett 2007; 256:126-31. [PMID: 16487329 DOI: 10.1111/j.1574-6968.2006.00101.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neotyphodium species occur as endophytic fungi in cool-season grasses around the world. The beneficial aspects of grass-Neotyphodium associations have provoked researchers to look for a novel association in plant species where this symbiotum has not been reported. We surveyed Russian bromegrass (Bromus tomentellus Boiss.) accessions from a germplasm collection for the presence of Neotyphodium spp. fungi and determined levels of endophyte infection in B. tomentellus populations in native rangelands of Iran. Among 50 collected accessions, symbiotic fungi were detected in 45 accessions without any symptoms of choke disease on host plants. In culture medium, fast-growing endophytes appeared from seeds after 7-14 days. Plants grown from seed collections were 80-100% infected. Based on morphological characteristics and PCR analysis, we concluded that this fungus is a member of the Neotyphodium group of endophytic fungi. Lack of apparent toxicity to grazing animals suggests a place for endophyte-infected B. tomentellus in rangeland renovation, providing this infected grass exhibits increased tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | | | | |
Collapse
|
14
|
Spiering MJ, Moon CD, Wilkinson HH, Schardl CL. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 2005; 169:1403-14. [PMID: 15654104 PMCID: PMC1449547 DOI: 10.1534/genetics.104.035972] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.
Collapse
Affiliation(s)
- Martin J Spiering
- Department of Plant Pathology, University of Kentucky, Lexington, 40546-0312, USA
| | | | | | | |
Collapse
|
15
|
Wang J, Machado C, Panaccione DG, Tsai HF, Schardl CL. The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 2004; 41:189-98. [PMID: 14732265 DOI: 10.1016/j.fgb.2003.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many cool-season grasses harbor fungal endophytes in the genus Neotyphodium, which enhance host fitness, but some also produce metabolites--such as ergovaline--believed to cause livestock toxicoses. In Claviceps species the first step in ergot alkaloid biosynthesis is thought to be dimethylallyltryptophan (DMAT) synthase, encoded by dmaW, previously cloned from Claviceps fusiformis. Here we report the cloning and characterization of dmaW from Neotyphodium sp. isolate Lp1, an endophyte of perennial ryegrass (Lolium perenne). The gene was then disrupted, and the mutant failed to produce any detectable ergovaline or simpler ergot and clavine alkaloids. The disruption was complemented with the C. fusiformis gene, which restored ergovaline production. Thus, the biosynthetic role of DMAT synthase was confirmed, and a mutant was generated for future studies of the ecological and agricultural importance of ergot alkaloids in endophytes of grasses.
Collapse
Affiliation(s)
- Jinghong Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Epichloë and Neotyphodium species (Ascomycota) are mutualistic symbionts (endophytes) of temperate grasses, to which they impart numerous and profound fitness benefits. Epichloë festucae, a common symbiont of Festuca, Lolium,and Koeleria spp., is a model for endophyte research that is amenable to Mendelian and molecular genetic analysis. Characteristics of E. festucae include: (i) production of the anti-insect alkaloids peramine and lolines, (ii) production of the anti-vertebrate alkaloids lolitrem B and ergovaline, (iii) efficient vertical transmission via host seeds, (iv) a mildly pathogenic state associated with the E. festucae sexual cycle, and (v) a clear role in enhancing survival of host plants. Genetic analysis of alkaloid production has recently begun. Also, physiological and ultrastructural studies suggest that signals communicated between E. festucae and host plants ensure an exquisitely balanced interaction to the mutual benefit of both partners. Several mutualistic Neotyphodium species are hybrids between E. festucae and other endophyte species.
Collapse
Affiliation(s)
- C L Schardl
- Department of Plant Pathology, University of Kentucky, S-305 Agricultural Sciences Building N, Lexington, KY 40546-0091, USA
| |
Collapse
|
17
|
The perennial ryegrass endophyte Neotyphodium lolii genetically transformed with the green fluorescent protein gene (gfp) and visualization in the host plant. ACTA ACUST UNITED AC 2001. [DOI: 10.1017/s0953756201004075] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
|
19
|
Kuldau GA, Tsai HF, Schardl CL. Genome sizes of Epichloëspecies and anamorphic hybrids. Mycologia 1999. [DOI: 10.1080/00275514.1999.12061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gretchen A. Kuldau
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| | - Huei-Fung Tsai
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| | - Christopher L. Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| |
Collapse
|
20
|
Schardl CL. EPICHLOE SPECIES: fungal symbionts of grasses. ANNUAL REVIEW OF PHYTOPATHOLOGY 1996; 34:109-30. [PMID: 15012537 DOI: 10.1146/annurev.phyto.34.1.109] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Epichloë species and their asexual descendants (Acremonium endophytes) are fungal symbionts of C3 grasses that span the symbiotic continuum from antagonism to mutualism depending on the relative importance, respectively, of horizontal transmission of sexual spores versus vertical clonal transmission in healthy grass seeds. At least seven sexual Epichloë species are identifiable by mating tests, and many asexual genotypes are interspecific hybrids. Benefits conferred by the symbionts on host plants include protection from biotic factors and abiotic stresses such as drought. Four classes of beneficial alkaloids are associated with the symbionts: ergot alkaloids, indolediterpenes (lolitrems), peramine, and saturated aminopyrrolizidines (lolines). These alkaloids protect host plants from insect and vertebrate herbivores, including livestock. Genetic engineering of the fungal symbionts as more suitable biological protectants for forage grasses requires identification of fungal genes for alkaloid biosynthesis, and DNA-mediated transformation of the fungi.
Collapse
Affiliation(s)
- C L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| |
Collapse
|
21
|
Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GC, Siegel MR, Schardl CL. Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci U S A 1994; 91:2542-6. [PMID: 8172623 PMCID: PMC43405 DOI: 10.1073/pnas.91.7.2542] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mutualistic associations of tall fescue (Festuca arundinacea) with seed-borne fungal symbionts (endophytes) are important for fitness of the grass host and its survival under biotic and abiotic stress. The tall fescue endophytes are asexual relatives of biological species (mating populations) of genus Epichloë (Clavicipitaceae), sexual fungi that cause grass choke disease. Isozyme studies have suggested considerable genetic diversity among endophytes of tall fescue. Phylogenetic relationships among seven isolates from tall fescue, three from meadow fescue (a probable ancestor of tall fescue), and nine Epichloë isolates from other host species were investigated by comparing sequences of noncoding segments of the beta-tubulin (tub2) and rRNA (rrn) genes. Whereas each Epichloë isolate and meadow fescue endophyte had only a single tub2 gene, most tall fescue endophytes had two or three distinct tub2 copies. Phylogenetic analysis of tub2 sequences indicated that the presence of multiple copies in the tall fescue endophytes was a consequence of hybridization with Epichloë species. At least three hybridization events account for the distribution and relationships of tub2 genes. These results suggest that interspecific hybridization is the major cause of genetic diversification of the tall fescue endophytes.
Collapse
Affiliation(s)
- H F Tsai
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091
| | | | | | | | | | | | | |
Collapse
|
22
|
Scott B, Schardl C. Fungal symbionts of grasses: evolutionary insights and agricultural potential. Trends Microbiol 1993; 1:196-200. [PMID: 8143139 DOI: 10.1016/0966-842x(93)90091-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some filamentous fungal endophytes confer on their grass hosts important biological properties including resistance to grazing herbivores and resistance to nematodes and some fungal pathogens, as well as drought tolerance and greater field persistence. The production of alkaloids toxic to grazing animals is an undesirable aspect of the association in agronomic situations. Consequently, genetic strategies are being pursued to manipulate fungal endophytes and their hosts for agricultural benefit.
Collapse
Affiliation(s)
- B Scott
- Dept of Microbiology and Genetics, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
23
|
Schardl CL, An Z. Molecular biology and genetics of protective fungal endophytes of grasses. GENETIC ENGINEERING 1993; 15:191-212. [PMID: 7763840 DOI: 10.1007/978-1-4899-1666-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- C L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091
| | | |
Collapse
|