1
|
Yerlikaya S, Djamgoz MB. Oleamide, a Sleep-Inducing Compound: Effects on Ion Channels and Cancer. Bioelectricity 2022. [DOI: 10.1089/bioe.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Serife Yerlikaya
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Center, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
2
|
Sevcik C. Caveat on the Boltzmann distribution function use in biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:33-42. [PMID: 28412397 DOI: 10.1016/j.pbiomolbio.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/05/2023]
Abstract
Sigmoid semilogarithmic functions with shape of Boltzmann equations, have become extremely popular to describe diverse biological situations. Part of the popularity is due to the easy availability of software which fits Boltzmann functions to data, without much knowledge of the fitting procedure or the statistical properties of the parameters derived from the procedure. The purpose of this paper is to explore the plasticity of the Boltzmann function to fit data, some aspects of the optimization procedure to fit the function to data and how to use this plastic function to differentiate the effect of treatment on data and to attest the statistical significance of treatment effect on the data.
Collapse
Affiliation(s)
- Carlos Sevcik
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
3
|
Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol 2017; 8:43. [PMID: 28220076 PMCID: PMC5292575 DOI: 10.3389/fphys.2017.00043] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.
Collapse
Affiliation(s)
- Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| | - Sara I Liin
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
4
|
Dubois JM, Rouzaire-Dubois B. Roles of cell volume in molecular and cellular biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:93-7. [PMID: 22192789 DOI: 10.1016/j.pbiomolbio.2011.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/17/2023]
Abstract
Extracellular tonicity and volume regulation control a great number of molecular and cellular functions including: cell proliferation, apoptosis, migration, hormone and neuromediator release, gene expression, ion channel and transporter activity and metabolism. The aim of this review is to describe these effects and to determine if they are direct or are secondarily the result of the activity of second messengers.
Collapse
Affiliation(s)
- Jean-Marc Dubois
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette F-91198, France.
| | | |
Collapse
|
5
|
Dubois JM, Ouanounou G, Rouzaire-Dubois B. The Boltzmann equation in molecular biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:87-93. [PMID: 19616022 DOI: 10.1016/j.pbiomolbio.2009.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/07/2009] [Indexed: 12/29/2022]
Abstract
In the 1870's, Ludwig Boltzmann proposed a simple equation that was based on the notion of atoms and molecules and that defined the probability of finding a molecule in a given state. Several years later, the Boltzmann equation was developed and used to calculate the equilibrium potential of an ion species that is permeant through membrane channels and to describe conformational changes of biological molecules involved in different mechanisms including: open probability of ion channels, effect of molecular crowding on protein conformation, biochemical reactions and cell proliferation. The aim of this review is to trace the history of the developments of the Boltzmann equation that account for the behaviour of proteins involved in molecular biology and physiology.
Collapse
Affiliation(s)
- Jean-Marc Dubois
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, Gif sur Yvette F-91198, France.
| | | | | |
Collapse
|
6
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
7
|
London B, Albert C, Anderson ME, Giles WR, Van Wagoner DR, Balk E, Billman GE, Chung M, Lands W, Leaf A, McAnulty J, Martens JR, Costello RB, Lathrop DA. Omega-3 Fatty Acids and Cardiac Arrhythmias: Prior Studies and Recommendations for Future Research. Circulation 2007; 116:e320-35. [PMID: 17768297 DOI: 10.1161/circulationaha.107.712984] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Barry London
- Cardiovascular Institute, University of Pittsburgh Medical Center, Scaife S-572, 200 Lothrop St, Pittsburgh, PA 15213-2582, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wilson SM, Lee SC, Shook S, Pappone PA. ATP and beta-adrenergic stimulation enhance voltage-gated K current inactivation in brown adipocytes. Am J Physiol Cell Physiol 2000; 279:C1847-58. [PMID: 11078700 DOI: 10.1152/ajpcell.2000.279.6.c1847] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic activation of brown fat thermogenesis stimulates adrenergic and purinergic receptors. We examined the effects of extracellular ATP and beta-adrenergic agonists on voltage-activated K currents (IKv) in voltage-clamped rat brown adipocytes. ATP or the beta-adrenergic agonist isoproterenol increased the development of IKv inactivation during depolarizing voltage steps in perforated patch-clamped cells. The effects on inactivation developed slowly in the presence of agonist and continued to increase for long times following agonist washout. 8-bromo-cAMP or forskolin had similar effects on IKv inactivation. Development of IKv inactivation during depolarizations was consistently enhanced by ATP or beta-adrenergic stimulation in perforated-patch voltage-clamped cells but was not altered by these agents in whole cell recordings, suggesting that cytosolic factors are necessary for inactivation modulation. In either recording configuration, ATP or isoproterenol shifted the activation voltage dependence of IKv to more negative potentials, indicating the activation effect is mediated by a different pathway. Since both P2 purinergic and beta-adrenergic signaling pathways generate fatty acids, we tested whether fatty acids could reproduce these modulations of IKv. Linoleic or arachidonic acid applied in whole cell recordings had effects similar to those of ATP or isoproterenol in perforated-patch experiments. These results are consistent with the possibility that beta-adrenergic and P2 receptor stimulation modulate IKv through generation of fatty acids.
Collapse
Affiliation(s)
- S M Wilson
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
9
|
Chattopadhyay N, Ye CP, Yamaguchi T, Kerner R, Vassilev PM, Brown EM. Extracellular calcium-sensing receptor induces cellular proliferation and activation of a nonselective cation channel in U373 human astrocytoma cells. Brain Res 1999; 851:116-24. [PMID: 10642834 DOI: 10.1016/s0006-8993(99)02132-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A receptor for extracellular calcium ions (Ca2+o), cloned from parathyroid gland, serves a critical function in Ca2+o homeostasis by regulating PTH release via "sensing" of its physiological agonist, Ca2+o. Its cloning from rat striatum revealed that the extracellular calcium-sensing receptor (CaR) could be involved in sensing ambient Ca2+o within the brain, where Ca2+ plays key roles in virtually all aspects of central nervous system (CNS) function. The CaR is expressed in neurons, oligodendrocytes, microglia and the human astrocytoma cell line, U87 where its functions include control of cellular proliferation and modulation of ion channels, such as outward K+ channels and nonselective cation channels (NCC). In this report, we have shown that the CaR is expressed in U373 cells as assessed by RT-PCR using CaR-specific primers followed by sequencing of the amplified products, by Northern blot analysis using a CaR-specific probe as well as by Western analysis utilizing a specific polyclonal anti-CaR antiserum. Furthermore, agents known to activate the cloned CaR induce increases in cellular proliferation and the open probability of an NCC. Thus our study strongly suggests that elevated levels of Ca2+o, acting via the CaR, activate an NCC that could contribute to the associated CaR-induced stimulation of proliferation.
Collapse
Affiliation(s)
- N Chattopadhyay
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Shen AY, Li HF, Lu SI. Cytotoxicity studies of 2‐hydroxymethyl‐1‐naphthol diacetate on K
+
currents in neoplastic plasma cells. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199905)47:1<1::aid-ddr1>3.0.co;2-#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ai Yu Shen
- Department of Pharmaceutical Science, Foo Yin Institute of Technology, Ta‐Liao, Kaohsiung County, Taiwan
| | - Hui Fang Li
- Department of Medical Education and Research, Kaohsiung‐Veterans General Hospital, Kaohsiung City, Taiwan
| | - Shih I. Lu
- Department of Pharmaceutical Science, Foo Yin Institute of Technology, Ta‐Liao, Kaohsiung County, Taiwan
| |
Collapse
|
11
|
Shen AY, Wu SN, Chiu CT. Synthesis and cytotoxicity evaluation of some 8-hydroxyquinoline derivatives. J Pharm Pharmacol 1999; 51:543-8. [PMID: 10411213 DOI: 10.1211/0022357991772826] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Interest in Mannich bases of 8-hydroxyquinoline stems from reports of their high potency against human cancer cells. In the search for potential anticancer drug candidates, Mannich bases of 8-hydroxyquinoline (7-pyrrolidinomethyl-8-hydroxyquinoline, 7-morpholinomethyl-8-hydroxyquinoline, 7-piperidinomethyl-8-hydroxyquinoline and 7-diethylaminomethyl-8-hydroxyquinoline) were synthesised by reaction with various secondary amines and formaldehyde. They were prepared as hydrochlorides. The cytotoxic activity of 7-pyrrolidinomethyl-8-hydroxyquinoline, 7-morpholinomethyl-8-hydroxyquinoline and 7-diethylaminomethyl-8-hydroxyquinoline compounds in the National Cancer Institute in-vitro cancer cell line panel was determined. It was found that they exhibited substantial cytotoxic activity against leukaemia. The log concentration of 7-pyrrolidinomethyl-8-hydroxyquinoline, 7-morpholinomethyl-8-hydroxyquinoline and 7-diethylaminomethyl-8-hydroxyquinoline that inhibited 50% of 60 cell lines' growth were -4.81 M, -5.09 M and -5.35 M, respectively. Compound 7-pyrrolidinomethyl-8-hydroxyquinoline was selected for further in-vivo testing. The electrophysiological effect of 7-pyrrolidinomethyl-8-hydroxyquinoline also was tested in human myeloma cells (RPMI 8226). The outward current was voltage dependent, activating at -40 mV and believed to be the voltage-activated K+ current I(K(V)). 7-Pyrrolidinomethyl-8-hydroxyquinoline (1-30 microM) caused the inhibition of I(K(V)) in a concentration-dependent manner. The IC50 value of 7-pyrrolidinomethyl-8-hydroxyquinoline-induced inhibition of I(K(V)) is 23 microM. The GI50 value of 7-pyrrolidinomethyl-8-hydroxyquinoline-induced inhibition of cell growth is 14 microM. The results suggest that at least part of the cytotoxicity effect of 7-pyrrolidinomethyl-8-hydroxyquinoline on myeloma cells could be related to blockade of voltage-activated K+ channels.
Collapse
Affiliation(s)
- A Y Shen
- Department of Pharmaceutical Science, Foo Yin Institute of Technology, Kaohsiung, Taiwan, Republic of China
| | | | | |
Collapse
|
12
|
Affiliation(s)
- J X Kang
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | | |
Collapse
|
13
|
Gosling M, Poyner DR, Smith JW. Effects of arachidonic acid upon the volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells. J Physiol 1996; 493 ( Pt 3):613-23. [PMID: 8799885 PMCID: PMC1159011 DOI: 10.1113/jphysiol.1996.sp021408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of arachidonic acid upon the volume-sensitive Cl- current present in cultured osteoblastic cells (ROS 17/2.8) was studied using the whole-cell patch-clamp technique. 2. Arachidonate produced two distinct phases of inhibition, a rapid phase occurring within 10-15 s of application, preceding a slower phase that occurred 2 min after onset of arachidonate superfusion. Accompanying the slower inhibitory phase was an acceleration of the time-dependent inactivation exhibited by the current at strongly depolarized potentials (> + 50 mV). The half-maximal inhibitory concentrations (IC50) were 177 +/- 31 and 10 +/- 4 microM for the two phases, respectively. 3. Arachidonate was still effective in the presence of inhibitors of cyclo-oxygenase (indomethacin, 10 microM), lipoxygenase (nordihydroguaretic acid, 10-100 microM) and cytochrome P450 (SKF525A, 100 microM; ethoxyresorufin, 10 microM; metyrapone, 500 microM; piperonyl butoxide, 500 microM; cimetidine, 1 mM). The effects of arachidonate could not be produced by another cis unsaturated fatty acid, oleic acid. 4. Measurements of cell volume showed that arachidonate effectively inhibited the regulatory volume decrease elicited by ROS 17/2.8 cells in response to a reduction in extracellular osmolarity. 5. It is concluded that the volume-sensitive Cl- conductance in ROS 17/2.8 cells is directly modulated by arachidonate and may represent a physiological mechanism by which volume regulation can be controlled in these cells.
Collapse
Affiliation(s)
- M Gosling
- Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham, UK
| | | | | |
Collapse
|
14
|
Kang JX, Leaf A. Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proc Natl Acad Sci U S A 1996; 93:3542-6. [PMID: 8622972 PMCID: PMC39646 DOI: 10.1073/pnas.93.8.3542] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The effects of free polyunsaturated fatty acids (PUFA) on the binding of ligands to receptors on voltage-sensitive Na+ channels of neonatal rat cardiac myocytes were assessed. The radioligand was [benzoyl-2,5-(3)H] batrachotoxinin A 20alpha-benzoate ([(3)H]BTXB), a toxin that binds to the Na+ channel. The PUFA that have been shown to be antiarrhythmic, including eicosapentaenoic acid (EPA; C20:5n-3), docosahexaenoic acid (DHA; C22:6n-3), eicosatetraynoic acid (ETYA), linolenic acid (C18:3n-3), and linoleic acid (C18:2n-6), inhibited [(3)H]BTXB binding in a dose-dependent fashion with IC50 values of 28-35 microM, whereas those fatty acids that have no antiarrhythmic effects including saturated fatty acid (stearic acid, C18:0), monounsaturated fatty acid (oleic acid; C18:1n-9), and EPA methyl ester did not have a significant effect on [(3)H]BTXB binding. Enrichment of the myocyte membrane with cholesterol neither affected [(3)H]BTXB binding when compared with control cells nor altered the inhibitory effects of PUFA on [(3)H]BTXB binding. Scatchard analysis of [(3)H]BTXB binding showed that EPA reduced the maximal binding without altering the Kd for [(3)H]BTXB binding, indicating allosteric inhibition. The inhibition by EPA of [(3)H]BTXB binding was reversible (within 30 min) when delipidated bovine serum albumin was added. The binding of the PUFA to this site on the Na+ channel is reversible and structure-specific and occurs at concentrations close to those required for apparent antiarrhythmic effects and a blocking effect on the Na+ current, suggesting that binding of the PUFA at this site relates to their antiarrhythmic action.
Collapse
Affiliation(s)
- J X Kang
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
15
|
Kim D, Sladek CD, Aguado-Velasco C, Mathiasen JR. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol 1995; 484 ( Pt 3):643-60. [PMID: 7623282 PMCID: PMC1157950 DOI: 10.1113/jphysiol.1995.sp020693] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The presence and properties of K+ channels activated by arachidonic acid were studied in neuronal cells cultured from the mesencephalic and hypothalamic areas of rat brain. 2. Arachidonic acid produced a concentration-dependent (5-50 microM) and reversible activation of whole-cell currents. 3. In excised membrane patches, arachidonic acid applied to the cytoplasmic or extracellular side of the membrane caused opening of three types of channels whose current-voltage relationships were slightly outwardly rectifying, inwardly rectifying and linear, and whose single channel slope conductances at +60 mV were 143, 45 and 52 pS, respectively. 4. All three currents were K+ selective and blocked by 2 mM Ba2+ but not by other K+ channel blockers such as tetraethylammonium chloride, 4-aminopyridine and quinidine. The outwardly and inwardly rectifying currents were slightly voltage dependent with higher channel activity at more depolarized potentials. 5. Arachidonic acid activated the K+ channels in cells treated with cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and nordihydroguaiaretic acid), indicating that arachidonic acid itself can directly activate the channels. Alcohol and methyl ester derivatives of arachidonic acid failed to activate the K+ channels, indicating that the charged carboxyl group is important for activation. 6. Certain unsaturated fatty acids (linoleic, linolenic and docosahexaenoic acids), but not saturated fatty acids (myristic, palmitic, stearic acids), also reversibly activated all three types of K+ channel. 7. All three K+ channels were activated by pressure applied to the membrane (i.e. channels were stretch sensitive) with a half-maximal pressure of approximately 18 mmHg. The K+ channels were not blocked by 100 microM GdCl3. 8. A decrease in intracellular pH (over the range 5.6-7.2) caused a reversible, pH-dependent increase in channel activity whether the channel was initially activated by arachidonic acid or stretch. 9. Glutamate, a neurotransmitter reported to generate arachidonic acid in striatal neurons, did not cause activation of the K+ channels when applied extracellularly in cell-attached patches. 10. It is suggested that the K+ channels described here belong to a distinct family of ion channels that are activated by either fatty acids or membrane stretch. Although the physiological roles of these K+ channels are not yet known, they may be involved in cellular processes such as cell volume regulation and ischaemia-induced elevation of K+ loss.
Collapse
Affiliation(s)
- D Kim
- Department of Physiology and Biophysics, Chicago Medical School, IL 60064, USA
| | | | | | | |
Collapse
|
16
|
Kang JX, Xiao YF, Leaf A. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A 1995; 92:3997-4001. [PMID: 7732020 PMCID: PMC42089 DOI: 10.1073/pnas.92.9.3997] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because previous studies showed that polyunsaturated fatty acids can reduce the contraction rate of spontaneously beating heart cells and have antiarrhythmic effects, we examined the effects of the fatty acids on the electrophysiology of the cardiac cycle in isolated neonatal rat cardiac myocytes. Exposure of cardiomyocytes to 10 microM eicosapentaenoic acid for 2-5 min markedly increased the strength of the depolarizing current required to elicit an action potential (from 18.0 +/- 2.4 pA to 26.8 +/- 2.7 pA, P < 0.01) and the cycle length of excitability (from 525 ms to 1225 ms, delta = 700 +/- 212, P < 0.05). These changes were due to an increase in the threshold for action potential (from -52 mV to -43 mV, delta = 9 +/- 3, P < 0.05) and a more negative resting membrane potential (from -52 mV to -57 mV, delta = 5 +/- 1, P < 0.05). There was a progressive prolongation of intervals between spontaneous action potentials and a slowed rate of phase 4 depolarization. Other polyunsaturated fatty acids--including docosahexaenoic acid, linolenic acid, linoleic acid, arachidonic acid, and its nonmetabolizable analog eicosatetraynoic acid, but neither the monounsaturated oleic acid nor the saturated stearic acid--had similar effects. The effects of the fatty acids could be reversed by washing with fatty acid-free bovine serum albumin. These results show that free polyunsaturated fatty acids can reduce membrane electrical excitability of heart cells and provide an electrophysiological basis for the antiarrhythmic effects of these fatty acids.
Collapse
Affiliation(s)
- J X Kang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
17
|
Chopra M, Singh S. Developmental temperature selectively regulates a voltage-activated potassium current in Drosophila. JOURNAL OF NEUROBIOLOGY 1994; 25:119-26. [PMID: 8021644 DOI: 10.1002/neu.480250204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ionic currents are regulated by many conditions including disease states, aging, learning and memory, and chronic drug treatment. Here we describe a novel phenomenon of regulation of ionic currents by developmental temperature. Raising Drosophila larvae at 28 degrees C instead of 18 degrees C increased one of the two voltage-activated K(+)-currents, the delayed sustained IK, in their muscles by up to 3.5-fold, with little effect on the early transient current, IA. Consistent with this increase in IK, the amplitude and the duration of the action potentials were reduced. The major increase in IK occurred between a rather abrupt interval from 25 degrees to 28 degrees C. The activation curve of the increased current was shifted towards hyperpolarizing potentials. There was no change in activation kinetics. This phenomenon has mechanistic implications for activity-dependent neuronal plasticity, expression of ion channels in cultured cells and heterologous systems, phototransduction, and behavior. The specificity of the regulation suggests a discrete mechanism geared to affect excitability such that it can respond to altered external stimuli such as temperature.
Collapse
Affiliation(s)
- M Chopra
- Department of Biochemical Pharmacology, State University of New York at Buffalo 14260
| | | |
Collapse
|
18
|
Gérard V, Rouzaire-Dubois B, Dubois JM. Contribution of a H+ pump in determining the resting potential of neuroblastoma cells. J Membr Biol 1994; 137:119-25. [PMID: 8006950 DOI: 10.1007/bf00233481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this work was to examine the effects of changes in external K+ concentration (Ko) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H(+)-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid NG108-15 cells using the whole-cell patch-clamp technique. The results are as follows: (i) under standard conditions (Ko = 5 mM) the membrane potential was -60 +/- 1 mV. It was unchanged when Ko was decreased to 1 mM and was depolarized by 4 +/- 1 mV when Ko was increased to 10 mM. (ii) Internal Cs+ depolarized the membrane by 21 +/- 3 mV. (iii) The internal application of the vacuolar H(+)-ATPase inhibitors N-ethylmaleimide (NEM), NO3- and bafilomycin A1 (BFA) depolarized the membrane by 15 +/- 2, 18 +/- 2 and 16 +/- 2 mV, respectively. (iv) When NEM or BFA were added to the internal medium containing Cs+, the membrane was depolarized by 45 +/- 1 and 42 +/- 2 mV, respectively. (v) The external application of CCCP induced a transient depolarization followed by a prolonged hyperpolarization. This hyperpolarization was absent in BFA-treated cells. The voltage-dependent K+ current was increased at negative voltages and decreased at positive voltages by NEM, BFA and CCCP. Taken together, these results suggest that under physiological conditions, the resting potential of NG108-15 neuroblastoma cells is maintained at negative values by both voltage-dependent K+ channels and an electrogenic vacuolar type H(+)-ATPase.
Collapse
Affiliation(s)
- V Gérard
- Laboratoire de Physiologie Cellulaire, URA CNRS 1121, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
19
|
Veerkamp JH, van Kuppevelt TH, Maatman RG, Prinsen CF. Structural and functional aspects of cytosolic fatty acid-binding proteins. Prostaglandins Leukot Essent Fatty Acids 1993; 49:887-906. [PMID: 8140117 DOI: 10.1016/0952-3278(93)90174-u] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Robbins J, Marsh SJ, Brown DA. On the mechanism of M-current inhibition by muscarinic m1 receptors in DNA-transfected rodent neuroblastoma x glioma cells. J Physiol 1993; 469:153-78. [PMID: 8271196 PMCID: PMC1143866 DOI: 10.1113/jphysiol.1993.sp019809] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Acetylcholine (ACh) produces two membrane current changes when applied to NG108-15 mouse neuroblastoma x rat glioma hybrid cells transformed (by DNA transfection) to express m1 muscarinic receptors: it activates a Ca(2+)-dependent K+ conductance, producing an outward current, and it inhibits a voltage-dependent K+ conductance (the M conductance), thus diminishing the M-type voltage-dependent K+ current (IK(M)) and producing an inward current. The present experiments were undertaken to find out how far inhibition of IK(M) might be secondary to stimulation of phospholipase C, by recording membrane currents and intracellular Ca2+ changes with indo-1 using whole-cell patch-clamp methods. 2. Bath application of 100 microM ACh reversibly inhibited IK(M) by 47.3 +/- 3.2% (n = 23). Following pressure-application of 1 mM ACh, the mean latency to inhibition was 420 ms at 35 degrees C and 1.79 s at 23 degrees C. Latencies to inhibition by Ba2+ ions were 148 ms at 35 degrees C and 92 ms at 23 degrees C. 3. The involvement of a G-protein was tested by adding 0.5 mM GTP-gamma-S or 10 mM potassium fluoride to the pipette solution. These slowly reduced IK(M), with half-times of about 30 and 20 min respectively, and rendered the effect of superimposed ACh irreversible. Effects of ACh were not significantly changed after pretreatment for 24 h with 500 ng ml-1 pertussis toxin or on adding up to 10 mM GDP-beta-S to the pipette solution. 4. The role of phospholipase C and its products was tested using neomycin (to inhibit phospholipase C), inositol 1,4,5-trisphosphate (InsP3) and inositol 1,3,4,5-tetrakisphosphate (InsP4), heparin, and phorbol dibutyrate (PDBu) and staurosporin (to activate and inhibit protein kinase C respectively). Both neomycin (1 mM external) and InsP3 (100 microM intrapipette) inhibited the ACh-induced outward current and/or intracellular Ca2+ transient but did not block ACh-induced inhibition of IK(M). Intrapipette heparin (1 mM) blocked activation of IK(Ca) and reduced Ach-induced inhibitions of IK(M), but also reduced inhibition of ICa via endogeneous m4 receptors. PDBu (with or without intrapipette ATP) and staurosporin had no significant effects.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Robbins
- Department of Pharmacology, University College London
| | | | | |
Collapse
|
21
|
Ando S, Waki H, Kon K. Differential fatty acid release from CA1 and CA3 regions of rat hippocampal slices under hypoxia and hypoglycemia. Neurosci Lett 1993; 151:48-50. [PMID: 8469437 DOI: 10.1016/0304-3940(93)90042-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rat hippocampal slices were subjected to hypoxia and/or hypoglycemia for 10 min, and free fatty acids released in CA1 and CA3 regions were separately analyzed. Fatty acid accumulation in CA1 was not so significant under hypoglycemia, but very prominent under hypoxia. Free fatty acid levels in CA3 were much less than those in CA1 even under hypoxia plus hypoglycemia. This observation seems to be consistent with the selective vulnerability of CA1 neurons seen in in vivo ischemia. The decreasing order of accumulation of free fatty acid species in CA1 was C16:0 > C18:0 > C18:1 > C20:4 > C22:6. The increment fold as compared to control level was decreasing as follows: C22:6, 28 times; C20:4, 13 times, C18:1, 10 times; C18:0 = C16:0, 3 times. The present experimental conditions using hippocampal slices provided a good in vitro model to prove the selective hypoxic damages of the CA1 subfield in terms of free fatty acid release in association with the membrane degradation.
Collapse
Affiliation(s)
- S Ando
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | |
Collapse
|
22
|
Sumida C, Graber R, Nunez E. Role of fatty acids in signal transduction: modulators and messengers. Prostaglandins Leukot Essent Fatty Acids 1993; 48:117-22. [PMID: 7678706 DOI: 10.1016/0952-3278(93)90019-s] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many of the steps involved in signal transduction are regulated positively or negatively by fatty acids (FA) per se. FA have been shown to act both as modulators and messengers, particularly of signals triggered at the level of cell membranes. Enzymes and proteins of the cyclic AMP and the protein kinase C signalling pathways and those involving ion fluxes and mobilization are both activated and/or inhibited by FA. FA can also participate in a feedback control mechanism since phospholipases are themselves modulated by FA. FA, particularly arachidonic acid liberated from membrane phospholipids, are also second messengers in signal transduction, and a good example is the activation of protein kinase C by FA. FA play an important role in regulating the transmission of signals from the extracellular environment by acting as modulators and messengers within the complex intracellular network of relays.
Collapse
Affiliation(s)
- C Sumida
- INSERM U224, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | |
Collapse
|
23
|
Dubois JM, Rouzaire-Dubois B. Role of potassium channels in mitogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1993; 59:1-21. [PMID: 8419984 DOI: 10.1016/0079-6107(93)90005-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J M Dubois
- Laboratoire de Physiologie cellulaire, URA CNRS 1121, Université Paris Sud, Orsay, France
| | | |
Collapse
|