1
|
Skaliczki M, Lukács B, Magyar ZÉ, Kovács T, Bárdi M, Novák S, Diszházi G, Sárközi S, Márton I, Péli-Szabó J, Jóna I, Nánási P, Almássy J. 4-chloro-orto-cresol activates ryanodine receptor more selectively and potently than 4-chloro-meta-cresol. Cell Calcium 2020; 88:102213. [PMID: 32408025 DOI: 10.1016/j.ceca.2020.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
In this study we performed the comprehensive pharmacological analysis of two stereoisomers of 4-chloro-meta-cresol (4CMC), a popular ryanodine receptor (RyR) agonist used in muscle research. Experiments investigating the Ca2+-releasing action of the isomers demonstrated that the most potent isomer was 4-chloro-orto-cresol (4COC) (EC50 = 55 ± 14 μM), although 3-chloro-para-cresol (3CPC) was more effective, as it was able to induce higher magnitude of Ca2+ flux from isolated terminal cisterna vesicles. Nevertheless, 3CPC stimulated the hydrolytic activity of the sarcoplasmic reticulum ATP-ase (SERCA) with an EC50 of 91 ± 17 μM, while 4COC affected SERCA only in the millimolar range (IC50 = 1370 ± 88 μM). IC50 of 4CMC for SERCA pump was 167 ± 8 μM, indicating that 4CMC is not a specific RyR agonist either, as it activated RyR in a similar concentration (EC50 = 121 ± 20 μM). Our data suggest that the use of 4COC might be more beneficial than 4CMC in experiments, when Ca2+ release should be triggered through RyRs without influencing SERCA activity.
Collapse
Affiliation(s)
- Mariann Skaliczki
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Balázs Lukács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Tünde Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Miklós Bárdi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Szabolcs Novák
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Gyula Diszházi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Sándor Sárközi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Ildikó Márton
- Department of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Judit Péli-Szabó
- Medical Imaging Department, Division of Nuclear Medicine, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - István Jóna
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, 98. Nagyerdei krt. PO Box: 72, Debrecen 4012, Hungary
| | - Péter Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary; Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary.
| |
Collapse
|
2
|
Cagalinec M, Zahradníková A, Zahradníková A, Kováčová D, Paulis L, Kureková S, Hot’ka M, Pavelková J, Plaas M, Novotová M, Zahradník I. Calcium Signaling and Contractility in Cardiac Myocyte of Wolframin Deficient Rats. Front Physiol 2019; 10:172. [PMID: 30930784 PMCID: PMC6425137 DOI: 10.3389/fphys.2019.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 12/17/2022] Open
Abstract
Wolframin (Wfs1) is a membrane protein of the sarco/endoplasmic reticulum. Wfs1 mutations are responsible for the Wolfram syndrome, characterized by diabetic and neurological symptoms. Although Wfs1 is expressed in cardiac muscle, its role in this tissue is not clear. We have characterized the effect of invalidation of Wfs1 on calcium signaling-related processes in isolated ventricular myocytes of exon5-Wfs1 deficient rats (Wfs1-e5/-e5) before the onset of overt disease. Calcium transients and contraction were measured in field-stimulated isolated myocytes using confocal microscopy with calcium indicator fluo-3 AM and sarcomere length detection. Calcium currents and their calcium release-dependent inactivation were characterized in whole-cell patch-clamp experiments. At 4 months, Wfs1-e5/-e5 animals were euglycemic, and echocardiographic examination revealed fully compensated cardiac function. In field-stimulated isolated ventricular myocytes, both the amplitude and the duration of contraction of Wfs1-e5/-e5 animals were elevated relative to control Wfs1+/+ littermates. Increased contractility of myocytes resulted largely from prolonged cytosolic calcium transients. Neither the amplitude of calcium currents nor their voltage dependence of activation differed between the two groups. Calcium currents in Wfs1-e5/-e5 myocytes showed a larger extent of inactivation by short voltage prepulses applied to selectively induce calcium release-dependent inactivation of calcium current. Neither the calcium content of the sarcoplasmic reticulum, measured by application of 20 mmol/l caffeine, nor the expression of SERCA2, determined from Western blots, differed significantly in myocytes of Wfs1-e5/-e5 animals compared to control ones. These experiments point to increased duration of calcium release in ventricular myocytes of Wfs1-e5/-e5 animals. We speculate that the lack of functional wolframin might cause changes leading to upregulation of RyR2 channels resulting in prolongation of channel openings and/or a delay in termination of calcium release.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominika Kováčová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Kureková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matej Hot’ka
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jana Pavelková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Marta Novotová
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivan Zahradník
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Macková K, Zahradníková A, Hoťka M, Hoffmannová B, Zahradník I, Zahradníková A. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:691-703. [PMID: 28913625 DOI: 10.1007/s00249-017-1249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.
Collapse
Affiliation(s)
- Katarina Macková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Matej Hoťka
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Barbora Hoffmannová
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Ivan Zahradník
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia.
| |
Collapse
|
4
|
Jousset F, Rohr S. Optical recording of calcium currents during impulse conduction in cardiac tissue. NEUROPHOTONICS 2015; 2:021011. [PMID: 26158001 PMCID: PMC4478756 DOI: 10.1117/1.nph.2.2.021011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
We explore the feasibility of obtaining a spatially resolved picture of [Formula: see text] inward currents ([Formula: see text]) in multicellular cardiac tissue by differentiating optically recorded [Formula: see text] transients that accompany propagating action potentials. Patterned growth strands of neonatal rat ventricular cardiomyocytes were stained with the [Formula: see text] indicators Fluo-4 or Fluo-4FF. Preparations were stimulated at 1 Hz, and [Formula: see text] transients were recorded with high spatiotemporal resolution ([Formula: see text], 2 kHz analog bandwidth) with a photodiode array. Signals were differentiated after appropriate digital filtering. Differentiation of [Formula: see text] transients resulted in optically recorded calcium currents (ORCCs) that carried the temporal and pharmacological signatures of L-type [Formula: see text] inward currents: the time to peak amounted to [Formula: see text] (Fluo-4FF) and [Formula: see text] (Fluo-4), full-width at half-maximum was [Formula: see text], and ORCCs were completely suppressed by [Formula: see text][Formula: see text]. Also, and as reported before from patch-clamp studies, caffeine reversibly depressed the amplitude of ORCCs. The results demonstrate that the differentiation of [Formula: see text] transients can be used to obtain a spatially resolved picture of the initial phase of [Formula: see text] in cardiac tissue and to assess relative changes of activation/fast inactivation of [Formula: see text] following pharmacological interventions.
Collapse
Affiliation(s)
- Florian Jousset
- University of Bern, Department of Physiology, Bühlplatz 5, CH-3012 Bern, Switzerland
| | - Stephan Rohr
- University of Bern, Department of Physiology, Bühlplatz 5, CH-3012 Bern, Switzerland
| |
Collapse
|
5
|
Diaz-Sylvester PL, Porta M, Juettner VV, Lv Y, Fleischer S, Copello JA. Eudistomin D and penaresin derivatives as modulators of ryanodine receptor channels and sarcoplasmic reticulum Ca2+ ATPase in striated muscle. Mol Pharmacol 2014; 85:564-75. [PMID: 24423447 PMCID: PMC3965891 DOI: 10.1124/mol.113.089342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal muscle SR microsomes as well as the function of RyRs in planar bilayers. The effects of these alkaloids on [(3)H]ryanodine binding and SR Ca(2+) ATPase (SERCA) activity were also tested. MBED (1-5 μM) fully mimicked maximal activating effects of caffeine (20 mM) on SR Ca(2+) leak. At the single-channel level, MBED mimicked the agonistic action of caffeine on cardiac RyR gating (i.e., stabilized long openings characteristic of "high-open-probability" mode). EuD was a partial agonist at the maximal doses tested. The tested Pen derivatives displayed mild to no agonism on RyRs, SR Ca(2+) leak, or [(3)H]ryanodine binding studies. Unlike caffeine, EuD and some Pen derivatives significantly inhibited SERCA at concentrations required to modulate RyRs. Instead, MBED's affinity for RyRs (EC50 ∼ 0.5 μM) was much larger than for SERCA (IC50 > 285 μM). In conclusion, MBED is a potent RyR agonist and, potentially, a better choice than caffeine for microsomal and cell studies due to its reported lack of effects on adenosine receptors and phosphodiesterases. As a high-affinity caffeine-like probe, MBED could also help identify the caffeine-binding site in RyRs.
Collapse
Affiliation(s)
- Paula L Diaz-Sylvester
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois (P.L.D.-S., V.V.J., Y.L., J.A.C.); Department of Physiology, Midwestern University, Chicago School of Osteopathic Medicine, Downers Grove, Illinois (M.P.); and Departments of Biological Sciences and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (S.F.)
| | | | | | | | | | | |
Collapse
|
6
|
CAGALINEC M, WACZULÍKOVÁ I, ULIČNÁ O, CHORVAT D. Morphology and Contractility of Cardiac Myocytes in Early Stages of Streptozotocin-Induced Diabetes Mellitus in Rats. Physiol Res 2013; 62:489-501. [DOI: 10.33549/physiolres.932467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy is the leading cause of mortality in type 1 diabetes. Thus study of cardiomyocyte morphology and function during early stages of diabetes using modern analytical methods is of critical importance. Therefore, using confocal microscopy, we determined metric parameters, volumes and contractility, with calcium transients in isolated left-ventricular myocytes at one week after induction of diabetes in rats. Myocyte volume analysis from 3D confocal scans was performed using an automated contour detection algorithm that took the actual shape of the myocytes into account. We showed a significant reduction in myocyte volume in diabetic animals. We also showed a significant reduction in length and width but not in thickness of the myocytes, which suggests disproportional reorganization of the structure of the heart tissue during short-term diabetes. From a functional point of view, we observed a significant decrease in cell shortening at a stimulation frequency of 0.5 Hz. This was accompanied by a decrease in calcium transient amplitude. Together, these data suggest that impaired calcium handling is one of the factors that contributes to the observed decrease in myocyte shortening during early stages of streptozotocin-induced diabetes in rats.
Collapse
Affiliation(s)
- M. CAGALINEC
- Department of Pharmacology, Medical Faculty, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
7
|
Janiek R, Zahradníková A, Poláková E, Pavelková J, Zahradník I, Zahradníková A. Calcium spike variability in cardiac myocytes results from activation of small cohorts of ryanodine receptor 2 channels. J Physiol 2012; 590:5091-106. [PMID: 22890710 DOI: 10.1113/jphysiol.2012.234823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammalian cardiac myocytes, the elementary calcium releases triggered by step voltage stimuli manifest either as solitary or as twin spikes that vary widely in kinetics and amplitude for unknown reasons. Here we examined the variability of calcium spikes measured using line-scanning confocal microscopy in patch-clamped rat ventricular myocytes. Amplitude distributions of the single and of the first of twin spikes were broader than those of the second spikes. All could be best approximated by a sum of a few elementary Gaussian probability distribution functions. The latency distributions of the single and the first spikes were identical, much shorter and less variable than those of the second spikes. The multimodal distribution of spike amplitudes and the probability of occurrence of twin spikes were stochastically congruent with activation of only a few of the many RyR2 channels present in the release site cluster. The occurrence of twin release events was rare due to refractoriness of release, induced with a probability proportional to the number of RyR2s activated in the primary release event. We conclude that the variability of the elementary calcium release events supports a calcium signalling mechanism that arises from stochastics of RyR2 gating and from inactivation of local origin.
Collapse
Affiliation(s)
- Radoslav Janiek
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vl´arska 5, 833 34 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
8
|
Poláková E, Zahradníková A, Pavelková J, Zahradník I, Zahradníková A. Local calcium release activation by DHPR calcium channel openings in rat cardiac myocytes. J Physiol 2008; 586:3839-54. [PMID: 18591191 DOI: 10.1113/jphysiol.2007.149989] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The principal role of calcium current in the triggering of calcium release in cardiac myocytes is well recognized. The mechanism of how calcium current (I(Ca)) controls the intensity of calcium release is not clear because of the stochastic nature of voltage-dependent gating of calcium channels (DHPRs) and of calcium-dependent gating of ryanodine receptors (RyRs). To disclose the relation between DHPR openings and the probability of calcium release, local calcium release activation by I(Ca) was investigated in rat ventricular myocytes using patch-clamp and confocal microscopy. Calcium spikes were activated by temporally synchronized DHPR calcium current triggers, generated by instantaneous 'tail' I(Ca) and modulated by prepulse duration, by tail potential, and by the DHPR agonist BayK 8644. The DHPR-RyR coupling fidelity was determined from the temporal distribution of calcium spike latencies using a model based on exponentially distributed DHPR open times. The analysis provided a DHPR mean open time of approximately 0.5 ms, RyR activation time constant of approximately 0.6 ms, and RyR activation kinetics of the 4th order. The coupling fidelity was low due to the inherent prevalence of very short DHPR openings but was increased when DHPR openings were prolonged by BayK 8644. The probability of calcium release activation was high, despite low coupling fidelity, due to the activation of many DHPRs at individual release sites. We conclude that the control of calcium release intensity by physiological stimuli can be achieved by modulating the number and duration of DHPR openings at low coupling fidelity, thus avoiding the danger of inadvertently triggering calcium release events.
Collapse
Affiliation(s)
- Eva Poláková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
9
|
Zahradník I, Minarovic I, Zahradníková A. Inhibition of the cardiac L-type calcium channel current by antidepressant drugs. J Pharmacol Exp Ther 2008; 324:977-84. [PMID: 18048694 DOI: 10.1124/jpet.107.132456] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antidepressants inhibit many membrane receptors and ionic channels, including the L-type calcium channel. Here, we investigated the inhibition of calcium current (I(Ca)) by antidepressants in enzymatically isolated rat ventricular myocytes using whole-cell patch clamp. The molecular mechanism of inhibition was studied by comparing the voltage and state dependence of antidepressant inhibition of I(Ca) to the respective properties of calcium antagonists, and by studying the effect of (+/-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester (Bay K8644) or diltiazem on the inhibitory potency of the antidepressants. All selected antidepressants inhibited calcium currents reversibly and concentration-dependently. At a stimulation frequency of 0.33 Hz, the antidepressants imipramine, clomipramine, desipramine, amitriptyline, maprotiline, citalopram, and dibenzepin blocked I(Ca), with IC(50) values of 8.3, 11.6, 11.7, 23.2, 31.0, 64.5, and 364 muM. The antidepressant drugs shifted steady-state inactivation curves of I(Ca) to negative voltages. The extent of the shift was similar to that induced by diltiazem or verapamil, but it was significantly smaller than that induced by felodipine. The use-dependent component of the antidepressant-induced block was similar to that of diltiazem, and it was significantly more and less, respectively, than those of felodipine and verapamil. In the presence of Bay K8644, antidepressants were more effective in inhibiting I(Ca). However, the inhibitory effect of antidepressants was also augmented by diltiazem, suggesting that these drugs do not compete with diltiazem for a single binding site. These data suggest that antidepressants exert their inhibitory action on cardiac L-type calcium channels by a specific interaction at a receptor site similar to, but distinct from, the benzothiazepine site.
Collapse
Affiliation(s)
- Ivan Zahradník
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovak Republic
| | | | | |
Collapse
|
10
|
Zahradníková A, Minarovic I, Zahradník I. Competitive and cooperative effects of Bay K8644 on the L-type calcium channel current inhibition by calcium channel antagonists. J Pharmacol Exp Ther 2007; 322:638-45. [PMID: 17475903 DOI: 10.1124/jpet.107.122176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenylalkylamines, benzothiazepines, and dihydropyridines bind noncompetitively to the L-type calcium channel. The molecular mechanisms of this interaction were investigated in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. When applied alone, felodipine, verapamil, and diltiazem inhibited the L-type calcium current with values of inhibitory constant (K(B)) of 11, 246, and 512 nM, respectively, whereas 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester (Bay K8644) activated I(Ca) with activation constant (K(A)) of 33 nM. Maximal activation of I(Ca) by 300 nM Bay K8644 strongly reduced the inhibitory potency of felodipine (apparent K(B) of 165 nM), significantly reduced the inhibitory potency of verapamil (apparent K(B) of 737 nM), but significantly increased the inhibitory potency of diltiazem (apparent K(B) of 310 nM). In terms of a new pseudoequilibrium two-drug binding model, the interaction between the dihydropyridine agonist Bay K8644 and the antagonist felodipine was found purely competitive. The interaction between Bay K8644 and verapamil or diltiazem was found noncompetitive, and it could be described only by inclusion of a negative interaction factor nu = -0.60 for verapamil and a positive interaction factor nu = +0.24 for diltiazem. These results suggest that at physiological membrane potentials, the L-type calcium channel cannot be simultaneously occupied by a dihydropyridine agonist and antagonist, whereas it can simultaneously bind a dihydropyridine agonist and a nondihydropyridine antagonist. Generally, the effects of the drugs on the L-type calcium channel support a concept of a channel domain responsible for binding of calcium channel antagonists and agonists changing dynamically with the membrane voltage and occupancy of individual binding sites.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/metabolism
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Algorithms
- Allosteric Regulation
- Animals
- Binding Sites
- Binding, Competitive
- Calcium/metabolism
- Calcium Channel Agonists/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/physiology
- Cells, Cultured
- Diltiazem/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Felodipine/pharmacology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Male
- Membrane Potentials/drug effects
- Models, Biological
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Patch-Clamp Techniques
- Protein Binding
- Rats
- Rats, Wistar
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovak Republic
| | | | | |
Collapse
|
11
|
Zahradníková A, Poláková E, Zahradník I, Zahradníková A. Kinetics of calcium spikes in rat cardiac myocytes. J Physiol 2006; 578:677-91. [PMID: 17124272 PMCID: PMC2151335 DOI: 10.1113/jphysiol.2006.117796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The local calcium release flux signals (calcium spikes) evoked by membrane depolarization were recorded at high temporal resolution (2000 lines s(-1)) in isolated ventricular myocytes of male rats, using combination of scanning confocal microscopy and the patch-clamp technique. The kinetic properties of calcium spikes were investigated. The time course of calcium spike activation could be described reliably by a model with higher-order (n = 3) kinetics, but not by a first-order exponential process. A model of calcium spike with calcium release termination coupled to its activation was preferential to a model with the release termination independent of its activation. Three fluorescent calcium dyes (OG-5N, fluo-3, and fluo-4) were compared for calcium spike measurements. Experimental measurements as well as simulations showed that the occurrence and latency of calcium spikes could be measured faithfully with all indicators, while the kinetics of calcium spikes was reliably traced only with OG-5N. Calcium spikes evoked by a step depolarization from -50 to 0 mV commenced with a mean latency of 4.1 +/- 0.2 ms and peaked 6.7 +/- 0.2 ms later. Their full amplitudes were normally distributed. The activation time constant of calcium spikes was 3.1 +/- 0.1 ms, and the time constant of termination was 5.5 +/- 0.2 ms. A negative correlation was observed between the observed amplitude of calcium spikes and their time constant of activation, but there was no correlation between their observed amplitude and time constant of termination, in agreement with the concept of steep calcium-dependent activation and fateful inactivation of calcium release flux.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
12
|
Mojzisová G, Mirossay L, Kucerová D, Kyselovic J, Mirossay A, Mojzis J. Protective effect of selected flavonoids on in vitro daunorubicin-induced cardiotoxicity. Phytother Res 2006; 20:110-4. [PMID: 16444662 DOI: 10.1002/ptr.1811] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flavonoids are an ubiquitous group of polyphenolic substances with varied chemical structures present in foods of plant origin and act as free radical scavenging and chelating agents with a variety of biological activities. Using a model of spontaneously beating, cultured adult rat cardiomyocytes, this study examined the cardioprotective role of quercetin, naringenin, pycnogenol and a model antioxidant, trolox, against daunorubicin-induced toxicity. Cardiomyocyte protection was assessed by MTT test and extracellular lactate dehydrogenase detection. Protection of cardiomyocytes was concentration/dose dependent for quercetin > naringenin > pycnogenol > trolox. Quercetin (10(-4)-10(-6) mol/L) after 24 h of co-incubation with daunorubicin significantly increased the cardiomyocyte survival in all tested concentrations (p < 0.001). The cytoprotective effect of naringenin (10(-4)-10(-6) mol/L) was similar to those of quercetin (p < 0.001 and p < 0.01, respectively). Pycnogenol was the least effective of the flavonoids studied. On the other hand, all tested flavonoids had significantly better protective effects than trolox. The leakage of lactate dehydrogenase induced by daunorubicin was also prevented by the studied compounds and was in accordance with their cytoprotective activity.
Collapse
Affiliation(s)
- G Mojzisová
- Department of Experimental Medicine, Medical Faculty, University of P.J. Safarik Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Hinch R, Greenstein JL, Tanskanen AJ, Xu L, Winslow RL. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. Biophys J 2004; 87:3723-36. [PMID: 15465866 PMCID: PMC1304886 DOI: 10.1529/biophysj.104.049973] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca2+)-induced Ca2+ release (CICR) in cardiac myocytes exhibits high gain and is graded. These properties result from local control of Ca2+ release. Existing local control models of Ca2+ release in which interactions between L-Type Ca2+ channels (LCCs) and ryanodine-sensitive Ca2+ release channels (RyRs) are simulated stochastically are able to reconstruct these properties, but only at high computational cost. Here we present a general analytical approach for deriving simplified models of local control of CICR, consisting of low-dimensional systems of coupled ordinary differential equations, from these more complex local control models in which LCC-RyR interactions are simulated stochastically. The resulting model, referred to as the coupled LCC-RyR gating model, successfully reproduces a range of experimental data, including L-Type Ca2+ current in response to voltage-clamp stimuli, inactivation of LCC current with and without Ca2+ release from the sarcoplasmic reticulum, voltage-dependence of excitation-contraction coupling gain, graded release, and the force-frequency relationship. The model does so with low computational cost.
Collapse
Affiliation(s)
- R Hinch
- Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Vadakkadath Meethal S, Potter KT, Redon D, Heisey DM, Haworth RA. Ca transients from Ca channel activity in rat cardiac myocytes reveal dynamics of dyad cleft and troponin C Ca binding. Am J Physiol Cell Physiol 2004; 286:C302-16. [PMID: 14534082 DOI: 10.1152/ajpcell.00193.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The properties of the dyad cleft can in principle significantly impact excitation-contraction coupling, but these properties are not easily amenable to experimental investigation. We simultaneously measured the time course of the rise in integrated Ca current ( ICa) and the rise in concentration of fura 2 with Ca bound ([Ca-fura 2]) with high time resolution in rat myocytes for conditions under which Ca entry is only via L-type Ca channels and sarcoplasmic reticulum (SR) Ca release is blocked, and compared these measurements with predictions from a finite-element model of cellular Ca diffusion. We found that 1) the time course of the rise of [Ca-fura 2] follows the time course of integrated ICaplus a brief delay (1.36 ± 0.43 ms, n = 6 cells); 2) from the model, high-affinity Ca binding sites in the dyad cleft at the level previously envisioned would result in a much greater delay (≥3 ms) and are therefore unlikely to be present at that level; 3) including ATP in the model promoted Ca efflux from the dyad cleft by a factor of 1.57 when low-affinity cleft Ca binding sites were present; 4) the data could only be fit to the model if myofibrillar troponin C (TnC) Ca binding were low affinity (4.56 μM), like that of soluble troponin C, instead of the high-affinity value usually used (0.38 μM). In a “good model,” the rate constants for Ca binding and dissociation were 0.375 times the values for soluble TnC; and 5) consequently, intracellular Ca buffering at the rise of the Ca transient is inferred to be low.
Collapse
|
15
|
Zahradníková A, Kubalová Z, Pavelková J, Györke S, Zahradník I. Activation of calcium release assessed by calcium release-induced inactivation of calcium current in rat cardiac myocytes. Am J Physiol Cell Physiol 2004; 286:C330-41. [PMID: 14522820 DOI: 10.1152/ajpcell.00272.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian cardiac myocytes, calcium released into the dyadic space rapidly inactivates calcium current ( ICa). We used this Ca2+ release-dependent inactivation (RDI) of ICa as a local probe of sarcoplasmic reticulum Ca2+ release activation. In whole cell patch-clamped rat ventricular myocytes, Ca2+ entry induced by short prepulses from —50 mV to positive voltages caused suppression of peak ICa during a test pulse. The negative correlation between peak ICa suppression and ICa inactivation during the test pulse indicated that RDI evoked by the prepulse affected only calcium channels in those dyads in which calcium release was activated. Ca2+ ions injected during the prepulse and during the subsequent tail current suppressed peak ICa in the test pulse to a different extent. Quantitative analysis indicated that equal Ca2+ charge was 3.5 times less effective in inducing release when entering during the prepulse than when entering during the tail. Tail Ca2+ charge injected by the first voltage-dependent calcium channel (DHPR) openings was three times less effective than that injected by DHPR reopenings. These findings suggest that calcium release activation can be profoundly influenced by the recent history of L-type Ca2+ channel activity due to potentiation of ryanodine receptors (RyRs) by previous calcium influx. This conclusion was confirmed at the level of single RyRs in planar lipid bilayers: using flash photolysis of the calcium cage NP-EGTA to generate two sequential calcium stimuli, we showed that RyR activation in response to the second stimulus was four times higher than that in response to the first stimulus.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
16
|
Lang RJ, Hashitani H, Keller S, Takano H, Mulholland EL, Fukuta H, Suzuki H. Modulators of internal Ca2+ stores and the spontaneous electrical and contractile activity of the guinea-pig renal pelvis. Br J Pharmacol 2002; 135:1363-74. [PMID: 11906949 PMCID: PMC1573271 DOI: 10.1038/sj.bjp.0704609] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The role of internal Ca(2+) stores in the generation of the rhythmic electrical and contractile activity in the guinea-pig proximal renal pelvis was examined using intracellular microelectrode and muscle tension recording techniques. 2. Ryanodine (30 microM) transiently increased contraction amplitude, while caffeine (0.5 - 3 mM) reduced contraction amplitude and frequency. Contractility was also reduced by 2-aminoethoxy-diphenylborate (2-APB 60 microM), xestospongin C (1 microM), U73122 (5 microM) and neomycin (4 mM), blockers of IP(3)-dependent release from Ca(2+) stores. 3. 60 mM K(+) saline-evoked contractions were reduced by caffeine (1 mM), U73122 (5 microM) and neomycin (4 mM), but little affected by ryanodine or 2-APB (60 microM). 4. Spontaneous action potentials consisting of an initial spike followed by a long plateau were recorded (frequency 8.6+/-1.0 min(-1)) in small urothelium-denuded strips of proximal renal pelvis. 5. Action potential discharge was blocked in 75 and 35% of cells by 2-APB (60 microM) and caffeine (1 mM), respectively. In the remaining cells, only a truncation of the plateau phase was observed. 6. Cyclopiazonic acid (CPA 10 microM for 10 - 180 min), blocker of CaATPase, transiently increased contraction frequency and amplitude. Action potential durations were increased 3.6 fold. Contraction amplitude and frequency slowly declined during a prolonged (>60 min) CPA exposure. 7. We conclude that the action potential in caffeine-sensitive cells and the shoulder component of caffeine-insensitive action potential arise from the entry of Ca(2+) through Ca(2+) channels. The inhibitory actions of modulators of internal Ca(2+) release were partially explained by a blockade of Ca(2+) entry.
Collapse
Affiliation(s)
- R J Lang
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In addition to its known effects on Ca(2+) and Ba(2+) currents, the L-type Ca(2+) channel agonist FPL-64176 was found to affect channel function in isolated rat ventricular myocytes in the absence of Ca(2+), with other ions as current carriers through the channel. FPL-64176 induced Cd(2+) current through the L-type Ca(2+) channel, suggesting that certain selectivity properties had changed, perhaps indicative of a small change in pore structure. FPL-64176 slightly but significantly decreased the effectiveness of Co(2+) as a blocker of the channel. FPL-64176 also increased conductance through single L-type Ca(2+) channels recorded in the cell-attached configuration, from 71.9 +/- 11.6 to 94.1 +/- 8.3 pS, with Na(+) carrying the current at pH 9.0. At present it is uncertain whether FPL-64176 produces small alterations of a sole open state of the channel or whether it increases the prevalence of a second, higher conductance open state. These changes, particularly the conversion of Cd(2+) from a pure blocker to a permeant ion, may be of eventual help in discriminating among different models for Ca(2+) channel selectivity.
Collapse
Affiliation(s)
- J Fan
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA
| | | | | |
Collapse
|
18
|
Kapelko VI, Lakomkin VL, Studneva IM, Pisarenko OI. Effects of prolonged caffeine consumption on cardiac contractile function in rats. J Cardiovasc Pharmacol 2000; 36:669-75. [PMID: 11065228 DOI: 10.1097/00005344-200011000-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of the study was to explore effects of prolonged caffeine administration on the contractile function and myocardial energy metabolites of the isolated rat heart. Caffeine treatment for 1 week (10 mg/kg, i.p., twice a day) was followed by unchanged pump function of the isolated heart, but reduced maximal left ventricular (LV) systolic pressure by 14% (p < 0.05). Caffeine consumption during 8-9 weeks (0.1% water solution) was also followed by unchanged maximal pump function but increased maximal double product (LV developed pressure multiplied by heart rate) by 23% (p < 0.05). The hearts of caffeine-consumed rats also maintained a higher level of the pump function at a high rate of atrial electrostimulation. The myocardial content of adenosine triphosphate (ATP), creatine phosphate, as well as creatine was slightly but insignificantly increased after caffeine consumption. Results show that in the course of prolonged caffeine treatment, the maximal myocardial contractile function first decreases and then increases, showing adaptation of the heart.
Collapse
Affiliation(s)
- V I Kapelko
- Institute of Experimental Cardiology, Russian Cardiological Scientific and Productive Complex, Moscow.
| | | | | | | |
Collapse
|
19
|
Papp Z, Peineau N, Szigeti G, Argibay J, Kovács L. Calcium-dependent modulation of the plateau phase of action potential in isolated ventricular cells of rabbit heart. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:119-29. [PMID: 10571547 DOI: 10.1046/j.1365-201x.1999.00599.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
[Ca2+]i-dependent modulation of the action potential has been studied in Fura-2 dialysed ventricular myocytes of the rabbit using the whole-cell current-clamp method. Fifteen consecutive action potentials (AP1-AP15) and [Ca2+]i transients were elicited at a frequency of 0.2 Hz. A single, brief application of caffeine (during AP9) first enhanced and thereafter attenuated the [Ca2+]i transients accompanying AP9 and AP10-AP12, respectively. This approach provided direct comparison between time courses of action potentials: during the initial steady state (e.g. AP8) and when Ca2+ release from the sarcoplasmic reticulum was increased by caffeine (AP9) or decreased by depletion (AP10). The increase in [Ca2+]i facilitated repolarization and decreased action potential duration. However, action potentials at reduced Ca2+ release (AP10) had longer duration than during steady state. The caffeine-induced changes in L-type Ca2+ current (ICa,L), during voltage-clamp conditions partially explained the effects of caffeine on action potentials. When ICa,L was blocked by 500 micromol L-1 Cd2+, enhanced [Ca2+]i transients revealed an extra current component which was outward at +10 mV and inward at the resting membrane potential (most probably the transient inward current). In the presence of Cd2+, however, AP8 and AP10 had identical time courses, suggesting that ICa,L alone was responsible for the lengthening of AP10. Alterations in the transmembrane Na+ gradient resulted in changes of the steady state action potential durations (AP8) consistently with the expected modulation of the Na+-Ca2+ exchange current. However, the contribution of this current to the [Ca2+]i-dependent behaviour of action potential plateau could not be demonstrated.
Collapse
Affiliation(s)
- Z Papp
- Department of Physiology, University Medical School of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
20
|
Fan JS, Palade P. One calcium ion may suffice to open the tetrameric cardiac ryanodine receptor in rat ventricular myocytes. J Physiol 1999; 516 ( Pt 3):769-80. [PMID: 10200424 PMCID: PMC2269301 DOI: 10.1111/j.1469-7793.1999.0769u.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The release of Ca2+ from sarcoplasmic reticulum in response to Ca2+ entering through L-type Ca2+ channels was studied in isolated voltage clamped rat ventricular myocytes at room temperature using the fluorescent Ca2+ indicators fluo-3 and Oregon Green 488 Bapta 5N. 2. Depolarizations to positive potentials elicited fluo-3 Ca2+ transients with rates of rise that were linearly related to the magnitude of the peak measured Ca2+ current in the presence of Cs+-containing pipette solutions. 3. Further experiments utilizing prepulses to preactivate a constant number of channels also revealed a linear relationship between the Ca2+ transient rate of rise and the magnitude of entering Ca2+ current at positive potentials. Under these conditions as well, the maximal rates of rise of global myoplasmic Ca2+ transients were due primarily to Ca2+ release from the sarcoplasmic reticulum as revealed by effects of ryanodine and caffeine on the Ca2+ transients. Using such prepulses, linearity between the Ca2+ transient rate of rise and the magnitude of the peak Ca2+ current was found under a variety of pulse protocols. 4. Using one such pulse protocol, linearity between the Ca2+ transient rate of rise and the magnitude of the peak Ca2+ current was also found when Ca2+ currents assessed at one potential were reduced in magnitude during the onset of block by application of Co2+. Using the same pulse protocol, linearity between the Ca2+ transient rate of rise and the magnitude of the peak Ca2+ current was also found when use of Cs+ was avoided by blocking K+ currents with extracellular TEA and 4-aminopyridine. Linearity in the relationship between the Ca2+ transient rate of rise and the magnitude of the peak Ca2+ current was also found when Ca2+ transients were measured using the low affinity Ca2+ indicator Oregon Green 488 Bapta 5N in place of fluo-3. 5. These results appear to indicate that the cardiac ryanodine receptor is capable of being activated by only one calcium ion. Alternative interpretations of the data are discussed.
Collapse
Affiliation(s)
- J S Fan
- Department of Physiology & Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
21
|
Puck TT, Johnson R, Webb P, Yohrling G. Mutation measurement in mammalian cells. IV: Comparison of gamma-ray and chemical mutagenesis. SOMATIC CELL AND MOLECULAR GENETICS 1998; 24:1-11. [PMID: 9776977 DOI: 10.1007/bf02677491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The interaction of chemical mutagens with mammalian cells is much more complex than that of gamma-irradiation because of the different ways in which chemical agents react with cell and medium components. Nevertheless, the system previously described for analysis of mutagenesis by gamma-radiation appears applicable to chemical mutagenesis. The approach involves measurement of cell survival, use of caffeine to inhibit repair, analysis of mitotic index changes, and quantitation of microscopically visible structural changes in mitotic chromosomes. The behavior of a variety of chemical mutagens and nonmutagens in this system is described and compared with that of gamma-irradiation. The procedure is simple and the results reasonably quantitative though less so than those of gamma-irradiation. The procedure can be used for environmental monitoring, analysis of mutational events, and individual and epidemiological testing. Mutational events should be classified as primary or secondary depending on whether they represent initial genomic insult, or genomic changes resulting from primary mutation followed by structural changes due to metabolic actions. While caffeine has multiple effects on the mammalian genome, when used under the conditions specified here it appears to act principally as an inhibitor of mutation repair, and so affords a measure of the role of repair in the action of different mutagens on cells in the G2 phase of the life cycle.
Collapse
Affiliation(s)
- T T Puck
- Eleanor Roosevelt Institute, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
22
|
Minarovic I, Vojtko R, Seböková E, Klimes I, Zahradník I. Effect of the high-fat diet on the calcium channels in rat myocardium. Ann N Y Acad Sci 1997; 827:550-5. [PMID: 9329789 DOI: 10.1111/j.1749-6632.1997.tb51869.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I Minarovic
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
23
|
Ravens U, Gath J, al Hussaini M, Himmel H. Mechanical restitution in atrial muscle from human and rat hearts: effects of agents that modify sarcoplasmic reticulum function. PHARMACOLOGY & TOXICOLOGY 1997; 81:97-104. [PMID: 9298507 DOI: 10.1111/j.1600-0773.1997.tb00038.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Force of contraction (Fc) of isolated human and rat atrial myocardium shows characteristic patterns of mechanical restitution when single test intervals are interposed in regular stimulation. With several pharmacological agents that modify the function of the sarcoplasmic reticulum we have investigated the role of the sarcoplasmic reticulum in mechanical restitution in these two species. Caffeine, thapsigargin and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ) were used to reduce Ca2+ uptake, ryanodine to open Ca2+ release channels, and forskolin to stimulate Ca2+ uptake. Under control conditions, Fc recovered rapidly with test intervals shorter than steady-state, and was potentiated with longer than steady-state intervals. In human atrial tissue the maximum potentiation factor was 1.26 +/- 0.03 after a mean test interval of 9.70 +/- 1.55 s (n = 43) as compared to 3.07 +/- 0.45 after 30 sec. in rat atria (n = 48). Caffeine (3 mM) did not significantly affect steady-state Fc but abolished post-rest potentiation in human and rat preparations. Forskolin (1 microM) enhanced and accentuated the mechanical restitution curve in particular for short test intervals. In the presence of thapsigargin (10 microM), steady-state Fc and mechanical restitution could not be distinguished from time-matched controls exposed to solvent only, indicating that this agent is ineffective in human and rat atrial tissue. In contrast, the putative Ca2+ uptake inhibitor BHQ (100 microM) strongly reduced steady-state Fc and decreased potentiation at all intervals in human muscle, but shifted the mechanical restitution curve in parallel to lower values in rat atria. Ryanodine (10 nM) induced post-rest decay in human and depressed both steady-state Fc and post-rest potentiation in rat atrial muscle. From these results it is concluded that human and rat atrial muscle differ in the Ca2+ handling by the sarcoplasmic reticulum during mechanical restitution.
Collapse
Affiliation(s)
- U Ravens
- Department of Pharmacology, University of Essen Medical School, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
The relative contributions of L-type Ca2+ current (ICa) and Na+/Ca2+ exchange to Ca2+ influx during the cardiac action potential (AP) are unknown. In this study, we have used an AP recorded under physiological conditions as the command voltage applied to voltage-clamped ventricular myocytes. ICa (measured as nifedipine-sensitive membrane current) had a complex multiphasic time course during the AP. Peak ICa was typically 4 pA/pF, after which it rapidly declined (to about 60% of peak) during the rising phase of the cell-wide Ca2+ transient before increasing to a second, more sustained component. The initial decline in ICa was sensitive to the amount of Ca2+ released by the sarcoplasmic reticulum (SR), and conditions that reduce the amplitude of the Ca2+ transient (such as rest or brief application of caffeine) increased net Ca2+ influx via ICa. Dissection of the Na+/Ca2+ exchange current at the start of the AP suggested that Ca2+ influx via Na+/Ca2+ exchange is less than 30% of that due to ICa. From these data, we suggest that ICa is the primary source of Ca2+ that triggers SR Ca2+ release, even at the highly depolarized membrane potentials associated with the AP. However, Ca2+ influx via Na+/Ca2+ exchange is not negligible and may activate some Ca2+ release from the SR, especially when ICa is reduced. We propose that SR Ca2+ release inhibits ICa within the same beat, thereby providing a negative feedback mechanism that may serve to limit Ca2+ influx as well as to regulate the amount of Ca2+ stored within the SR.
Collapse
Affiliation(s)
- C J Grantham
- Department of Pharmacology, St. George's Hospital Medical School, London, UK
| | | |
Collapse
|
25
|
Ravens U, Mahl C, Ohler A, Hardman SM, Noble MI. Mechanical restitution and recirculation fraction in cardiac myocytes and left ventricular muscle of adult rats. Basic Res Cardiol 1996; 91:123-30. [PMID: 8740528 DOI: 10.1007/bf00799684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Unloaded cell shortening was measured in electrically stimulated myocytes from adult rat hearts to compare the contractile response to stimulation with that in isometrically contracting left ventricular papillary muscles under similar experimental conditions, but preloaded to produce maximum twitch tension. Mechanical restitution in cells followed a biexponential function with time constants of 0.19 +/- 0.03 s and 36.4 +/- 10.2 s (7 cells from 5 hearts, n = 7/5). The time constants for papillary muscles were 0.58 +/- 0.05 s and 14.6 +/- 1.0 s (n = 6/6). In myocytes, maximum post-rest potentiation occurred after 30 to 60 s of rest. The potentiation after 60 s of rest was 2.48 +/- 0.31 times the steadystate in cells and 2.63 +/- 0.16 in papillary muscles. Recirculation fraction of C2+ as calculated from the decay of post-rest potentiation was 0.84 +/- 0.04 in single cells and 0.59 +/- 0.02 in papillary muscles (p < 0.005). Caffeine (3mM) abolished post-rest potentiation in both types of preparations. The numerical values for the time constants of mechanical restitution, potentiation factor and recirculation fraction in papillary muscles did not depend on preload. It is concluded that interval-dependent changes of contractility are preserved in single cardiac cells but the kinetics of decay of potentiation appear to have changed quantitatively.
Collapse
Affiliation(s)
- U Ravens
- Institut für Pharmakologie Universität-Gesamthochschule Essen, FRG
| | | | | | | | | |
Collapse
|
26
|
Nuñez L, Sanchez A, Fonteriz RI, Garcia-Sancho J. Mechanisms for synchronous calcium oscillations in cultured rat cerebellar neurons. Eur J Neurosci 1996; 8:192-201. [PMID: 8713463 DOI: 10.1111/j.1460-9568.1996.tb01180.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Removal of Mg2+ caused oscillations of the cytosolic Ca2+ concentration ([Ca2+]i) and the membrane potential in cultured cerebellar granule neurons. Oscillations of [Ca2+]i were synchronous in all the cells, and were restricted to the neurons (immunocytochemically identified) that responded to exogenous N-methyl-D-aspartate (NMDA). Oscillations were blocked by Ca2+ removal, nickel, NMDA receptor antagonists, omega-agatoxin IVA, tetrodotoxin, sodium removal and gamma-aminobutyric acid, but not by dihydropyridines, omega-conotoxin M VIIA or by emptying the intracellular Ca2+ stores with thapsigargin or ionomycin. The upstroke of the [Ca2+]i oscillations coincided in time with an increase in manganese permeability of the plasma membrane. Propagation of the [Ca2+]i wave followed more than one pathway and the spatiotemporal pattern changed with time. Membrane potential oscillations consisted of transient slow depolarizations of approximately 20 mV with faster phasic activity superimposed. We propose that the synchronous [Ca2+]i oscillations are the expression of irradiation of random excitation through a neuronal network requiring generation of action potentials and functional glutamatergic synapses. Oscillations of -Ca2+-i are due to cyclic Ca2+ entry through NMDA receptor channels activated by synaptic release of glutamate, which requires Ca2+ entry through P-type Ca2+ channels activated by action potentials at the presynaptic terminal.
Collapse
Affiliation(s)
- L Nuñez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain
| | | | | | | |
Collapse
|
27
|
Villalobos C, García-Sancho J. Caffeine-induced oscillations of cytosolic Ca2+ in GH3 pituitary cells are not due to Ca2+ release from intracellular stores but to enhanced Ca2+ influx through voltage-gated Ca2+ channels. Pflugers Arch 1996; 431:371-8. [PMID: 8584430 DOI: 10.1007/bf02207274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caffeine, a well known facilitator of Ca2+-induced Ca2+ release, induced oscillations of cytosolic free Ca2+ ([Ca2+]i) in GH3 pituitary cells. These oscillations were dependent on the presence of extracellular Ca2+ and blocked by dihydropyridines, suggesting that they are due to Ca2+ entry through L-type Ca2+ channels, rather than to Ca2+ release from the intracellular Ca2+ stores. Emptying the stores by treatment with ionomycin or thapsigargin did not prevent the caffeine-induced [Ca2+]i oscillations. Treatment with caffeine occluded phase 2 ([Ca2+]i oscillations) of the action of thyrotropin-releasing hormone (TRH) without modifying phase 1 (Ca2+ release from the intracellular stores). Caffeine also inhibited the [Ca2+]i increase induced by depolarization with high-K+ solutions (56% at 20 mM), suggesting direct inhibition of the Ca2+ entry through voltage-gated Ca2+ channels. We propose that the [Ca2+]i increase induced by caffeine in GH3 cells takes place by a mechanism similar to that of TRH, i.e. membrane depolarization that increases the firing frequency of action potentials. The increase of the electrical activity overcomes the direct inhibitory effect on voltage-gated Ca2+ channels with the result of increased Ca2+ entry and a rise in [Ca2+]i. Consideration of this action cautions interpretation of previous experiments in which caffeine was assumed to increase [Ca2+]i only by facilitating the release of Ca2+ from intracellular Ca2+ stores.
Collapse
Affiliation(s)
- C Villalobos
- Instituto de Biología y Genética Molecular, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, E-47005 Valladolid, Spain
| | | |
Collapse
|
28
|
Krown KA, Yasui K, Brooker MJ, Dubin AE, Nguyen C, Harris GL, McDonough PM, Glembotski CC, Palade PT, Sabbadini RA. TNF alpha receptor expression in rat cardiac myocytes: TNF alpha inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett 1995; 376:24-30. [PMID: 8521959 DOI: 10.1016/0014-5793(95)01238-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor-alpha (TNF alpha) is a potentially powerful anti-neoplastic agent; however, its therapeutic usefulness is limited by its cardiotoxic and negative inotropic effects. Accordingly, studies were undertaken to gain a better understanding of the mechanisms of TNF alpha-mediated cardiodepression. Single cell RT-PCR, [125I]TNF alpha ligand binding and Western immunoblotting experiments demonstrated that rat cardiac cells predominantly express type I TNF alpha receptors (TNFRI or p60). TNF alpha inhibited cardiac L-type Ca2+ channel current (ICa) and contractile Ca2+ transients. Thus, it is possible that the negative inotropic effects of TNF alpha are the result of TNFRI-mediated blockade of cardiac excitation-contraction coupling.
Collapse
Affiliation(s)
- K A Krown
- Department of Biology, San Diego State University, CA 92182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kano M, Garaschuk O, Verkhratsky A, Konnerth A. Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones. J Physiol 1995; 487:1-16. [PMID: 7473240 PMCID: PMC1156595 DOI: 10.1113/jphysiol.1995.sp020857] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Ryanodine receptor-mediated Ca2+ release was investigated in Purkinje neurones of rat cerebellar slices by using whole-cell patch-clamp recordings combined with fluorometric digital imaging of cytoplasmic Ca2+ concentration ([Ca2+]i). 2. Caffeine caused a transient increase in [Ca2+]i in the somata and dendrites of Purkinje neurones. Caffeine-induced Ca2+ transients were not associated with a membrane inward current and persisted in Ca(2+)-free external solutions, indicating that they are caused by Ca2+ released from intracellular stores. The amplitudes of the caffeine-mediated elevations in [Ca2+]i were strongly dependent on the baseline level of [Ca2+]i. 3. Intracellular application of Ruthenium Red through the patch pipette blocked caffeine-induced Ca2+ transients in Purkinje neurones. Ryanodine when applied either intra- or extracellularly caused a use-dependent block of caffeine-induced Ca2+ release. 4. Depolarization-induced Ca2+ transients were strongly prolonged by caffeine. Several lines of evidence suggest that these prolongations reflect Ca(2+)-induced Ca2+ release. 5. Despite the presence of skeletal muscle type ryanodine receptors in Purkinje neurones, depolarizing pulses failed to induce any changes in [Ca2+]i when the influx of Ca2+ through voltage-gated channels was prevented by using Ca(2+)-free solution, or when applying blockers of voltage-gated Ca2+ channels. 6. Dendritic Ca2+ transients produced by stimulation of the excitatory climbing fibre synaptic input were also prolonged by caffeine, indicating that ryanodine receptor-mediated release of Ca2+ may be involved in synaptic signalling in cerebellar Purkinje neurones. 7. Ryanodine receptor-mediated release of Ca2+ in cerebellar Purkinje neurones can be explained by a model in which release of Ca2+ is strongly facilitated by the co-operative action of Ca2+, caffeine and/or ryanodine. Our results suggest that Ca2+ release in these central neurones becomes prominent only during episodes of intensive electrical activity associated with increased Ca2+ entry.
Collapse
Affiliation(s)
- M Kano
- I. Physiologisches Institut, Universität des Saarlandes, Homburg, Germany
| | | | | | | |
Collapse
|
30
|
Abstract
Combined patch-clamp and fura-2 measurements were performed to investigate the mechanism that terminates Ca2+ release in rat skeletal myoballs. When cells were intracellularly perfused with solution containing 1 mM free Mg2+, the caffeine (10 mM)-induced Ca2+ transient was abruptly terminated by membrane repolarization (-70 mV). With low intracellular Mg2+ (e.g. 50 microM) perfusion, however, repolarization failed to terminate the caffeine transient. The results show that intracellular Mg2+ is necessary for repolarization-induced closing of the Ca2+ release channel.
Collapse
Affiliation(s)
- N Suda
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
31
|
López MG, Artalejo AR, García AG, Neher E, García-Sancho J. Veratridine-induced oscillations of cytosolic calcium and membrane potential in bovine chromaffin cells. J Physiol 1995; 482 ( Pt 1):15-27. [PMID: 7730979 PMCID: PMC1157750 DOI: 10.1113/jphysiol.1995.sp020496] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Veratridine (VTD) induced large oscillations of the cytosolic Ca2+ concentration ([Ca2+]i) and the membrane potential (Vm) in otherwise silent bovine chromaffin cells loaded with fura-2. 2. Depletion of the intracellular Ca2+ stores by thapsigargin or ryanodine did not affect these oscillations. Caffeine had a complex effect, decreasing them in cells with high activity but increasing them in cells with low activity. 3. The [Ca2+]i oscillations required extracellular Ca2+ and Na+ and were blocked by Ni2+ or tetrodotoxin. They were antagonized by high external concentrations of Mg2+ and/or Ca2+. 4. The oscillations of Vm had three phases: (i) slow depolarization (20 mV in 10-40 s); (ii) further fast depolarization (30 mV in 1 s); and (iii) rapid (5 s) repolarization. [Ca2+]i decreased during (i), increased quickly during (ii) with a 1 s delay with regard to the peak depolarization, and decreased during (iii). 5. Slight depolarizations increased the frequency of the oscillations whereas large depolarizations decreased it. 6. The Ca(2+)-dependent K+ channel blocker apamin increased the duration and decreased the frequency of the oscillations. 7. We propose the following mechanism for the oscillations: (i) the membrane depolarizes slowly by a decrease of potassium conductance (gK), perhaps due to a gradual decrease of [Ca2+]i; (ii) the threshold for activation of Na+ channels (decreased by VTD) is reached, producing further depolarization and recruiting Ca2+ channels, and inactivation of both Ca2+ and VTD-poisoned Na+ channels is slow; and (iii) gK increases, aided by activation of Ca(2+)-dependent K+ channels by the increased [Ca2+]i, and the membrane repolarizes. The contribution of the Na+ channels seems essential for the generation of the oscillations. 8. Bovine chromaffin cells have the machinery required for [Ca2+]i oscillations even though the more physiological stimulus tested here (high K+, field electrical stimulation, nicotinic or muscarinic agonists) produced mainly non-oscillatory responses.
Collapse
Affiliation(s)
- M G López
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Spain
| | | | | | | | | |
Collapse
|
32
|
[Ca2+]i inhibition of Ca2+ release-activated Ca2+ influx underlies agonist- and thapsigargin-induced [Ca2+]i oscillations in salivary acinar cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31726-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
McDonough PM, Yasui K, Betto R, Salviati G, Glembotski CC, Palade PT, Sabbadini RA. Control of cardiac Ca2+ levels. Inhibitory actions of sphingosine on Ca2+ transients and L-type Ca2+ channel conductance. Circ Res 1994; 75:981-9. [PMID: 7955152 DOI: 10.1161/01.res.75.6.981] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The naturally occurring second messenger sphingosine (SPH) was examined for its ability to influence cardiac myocyte Ca2+ regulation. SPH inhibited intracellular Ca2+ transients in adult and neonatal rat ventricular myocytes. The inhibition was steeply dose dependent, with complete blockage of the Ca2+ transients occurring in the 20- to 25-mumol/L range. Whole-cell patch clamping revealed substantial inhibition of the L-type Ca2+ channel current (ICa) by SPH. The ability of SPH to block both the Ca2+ transients and ICa was not dependent on protein kinases, since the general protein kinase inhibitor H7 failed to prevent the actions of SPH. The specificity of the effect of SPH was determined in experiments showing that SPH analogues did not produce comparable effects. Neither the naturally occurring ceramide, N-stearoyl SPH, nor the cell-permeant ceramide, N-acetyl SPH, had SPH-like actions on the Ca2+ transients or L-type channel conductances. Caffeine-induced Ca2+ transients were also inhibited by the actions of SPH on cardiac sarcoplamic reticulum Ca2+ release, and the threshold for caffeine-induced Ca2+ release was raised. We conclude that SPH inhibits excitation-contraction coupling in cardiac myocytes by reducing the amount of entering "trigger Ca2+" for Ca(2+)-induced Ca2+ release and by simultaneously raising the threshold of the ryanodine receptor for Ca(2+)-induced Ca2+ release. Consequently, we propose that sphingolipids produced by the sphingomyelin signal transduction pathway could be physiologically relevant regulators of cardiac [Ca2+]i and therefore cardiac contractility.
Collapse
Affiliation(s)
- P M McDonough
- Department of Biology, San Diego State University, CA 92182
| | | | | | | | | | | | | |
Collapse
|