1
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
2
|
A Natural Fungal Gene Drive Enacts Killing via DNA Disruption. mBio 2023; 14:e0317322. [PMID: 36537809 PMCID: PMC9972908 DOI: 10.1128/mbio.03173-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fungal spore killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to isolate, our understanding of the mechanisms underlying spore killers are limited. In particular, how these loci kill other spores within the fungal ascus is largely unknown. Here, we overcome these experimental barriers by developing model systems in 2 evolutionary distant organisms, Escherichia coli (bacterium) and Saccharomyces cerevisiae (yeast), similar to previous approaches taken to examine the wtf spore killers. Using these systems, we show that the Podospora anserina spore killer protein SPOK1 enacts killing through targeting DNA. IMPORTANCE Natural gene drives have shaped the genomes of many eukaryotes and recently have been considered for applications to control undesirable species. In fungi, these loci are called spore killers. Despite their importance in evolutionary processes and possible applications, our understanding of how they enact killing is limited. We show that the spore killer protein Spok1, which has homologues throughout the fungal tree of life, acts via DNA disruption. Spok1 is only the second spore killer locus in which the cellular target of killing has been identified and is the first known to target DNA. We also show that the DNA disrupting activity of Spok1 is functional in both bacteria and yeast suggesting a highly conserved mode of action.
Collapse
|
3
|
Jung KW, Kwon S, Jung JH, Bahn YS. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0104422. [PMID: 35736239 PMCID: PMC9431586 DOI: 10.1128/spectrum.01044-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
A balance in the deoxyribonucleotide (dNTPs) intracellular concentration is critical for the DNA replication and repair processes. In the model yeast Saccharomyces cerevisiae, the Mec1-Rad53-Dun1 kinase cascade mainly regulates the ribonucleotide reductase (RNR) gene expression during DNA replication and DNA damage stress. However, the RNR regulatory mechanisms in basidiomycete fungi during DNA replication and damage stress remain elusive. Here, we observed that in C. neoformans, RNR1 (large RNR subunit) and RNR21 (one small RNR subunit) were required for cell viability, but not RNR22 (another small RNR subunit). RNR22 overexpression compensated for the lethality of RNR21 suppression. In contrast to the regulatory mechanisms of RNRs in S. cerevisiae, Rad53 and Chk1 kinases cooperatively or divergently controlled RNR1 and RNR21 expression under DNA damage and DNA replication stress. In particular, this study revealed that Chk1 mainly regulated RNR1 expression during DNA replication stress, whereas Rad53, rather than Chk1, played a significant role in controlling the expression of RNR21 during DNA damage stress. Furthermore, the expression of RNR22, not but RNR1 and RNR21, was suppressed by the Ssn6-Tup1 complex during DNA replication stress. Notably, we observed that RNR1 expression was mainly regulated by Mbs1, whereas RNR21 expression was cooperatively controlled by Mbs1 and Bdr1 as downstream factors of Rad53 and Chk1 during DNA replication and damage stress. Collectively, the regulation of RNRs in C. neoformans has both evolutionarily conserved and divergent features in DNA replication and DNA damage stress, compared with other yeasts. IMPORTANCE Upon DNA replication or damage stresses, it is critical to provide proper levels of deoxynucleotide triphosphates (dNTPs) and activate DNA repair machinery. Ribonucleotide reductases (RNRs), which are composed of large and small subunits, are required for synthesizing dNTP. An imbalance in the intracellular concentration of dNTPs caused by the perturbation of RNR results in a reduction in DNA repair fidelity. Despite the importance of their roles, functions and regulations of RNR have not been elucidated in the basidiomycete fungi. In this study, we found that the roles of RNR1, RNR21, and RNR22 genes encoding RNR subunits in the viability of C. neoformans. Furthermore, their expression levels are divergently regulated by the Rad53-Chk1 pathway and the Ssn6-Tup1 complex in response to DNA replication and damage stresses. Therefore, this study provides insight into the regulatory mechanisms of RNR genes to DNA replication and damage stresses in basidiomycete fungi.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Avican K, Aldahdooh J, Togninalli M, Mahmud AKMF, Tang J, Borgwardt KM, Rhen M, Fällman M. RNA atlas of human bacterial pathogens uncovers stress dynamics linked to infection. Nat Commun 2021; 12:3282. [PMID: 34078900 PMCID: PMC8172932 DOI: 10.1038/s41467-021-23588-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific 'universal stress responders', that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex).
Collapse
Affiliation(s)
- Kemal Avican
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Jehad Aldahdooh
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matteo Togninalli
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - A K M Firoj Mahmud
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jing Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karsten M Borgwardt
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
6
|
Krin E, Pierlé SA, Sismeiro O, Jagla B, Dillies MA, Varet H, Irazoki O, Campoy S, Rouy Z, Cruveiller S, Médigue C, Coppée JY, Mazel D. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation. BMC Genomics 2018; 19:373. [PMID: 29783948 PMCID: PMC5963079 DOI: 10.1186/s12864-018-4716-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. RESULTS Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. CONCLUSIONS We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.
Collapse
Affiliation(s)
- Evelyne Krin
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Sebastian Aguilar Pierlé
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Odile Sismeiro
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Bernd Jagla
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Biomarker Discovery Platform, UtechS CB and Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Marie-Agnès Dillies
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Hugo Varet
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Oihane Irazoki
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Susana Campoy
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Zoé Rouy
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Stéphane Cruveiller
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Claudine Médigue
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Jean-Yves Coppée
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Didier Mazel
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| |
Collapse
|
7
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
8
|
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ, Schaaper RM. Suppression of the E. coli SOS response by dNTP pool changes. Nucleic Acids Res 2015; 43:4109-20. [PMID: 25824947 PMCID: PMC4417155 DOI: 10.1093/nar/gkv217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.
Collapse
Affiliation(s)
- Katarzyna H Maslowska
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | | | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Zhang Y, Okada R, Isaka M, Tatsuno I, Isobe KI, Hasegawa T. Analysis of the roles of NrdR and DnaB from Streptococcus pyogenes in response to host defense. APMIS 2014; 123:252-9. [PMID: 25469586 DOI: 10.1111/apm.12340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
Toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) is a re-emerging infectious disease. Many virulence-associated proteins play important roles in its pathogenesis and the production of these proteins is controlled by many regulatory factors. CovS is one of the most important two-component sensor proteins in S. pyogenes, and it has been analyzed extensively. Our recent analyses revealed the existence of a transposon between covS and nrdR in several strains, and we speculated that this insertion has some importance. Hence, we examined the significances of the NrdR stand-alone regulator and DnaB, which is encoded by the gene located immediately downstream of nrdR in S. pyogenes infection. We established an nrdR-only knockout strain, and both nrdR and partial dnaB knockout strain. These established knockout strains exhibited a deteriorated response to H2 O2 exposure. nrdR and partial dnaB knockout strain was more easily killed by human polynuclear blood cells, but the nrdR-only knockout strain had no significant difference compared to wild type in contrast to the combined knockout strain. In addition, the mouse infection model experiment illustrated that nrdR and partial dnaB knockout strain, but not the nrdR-only knockout strain, was less virulent compared with the parental strain. These results suggest that DnaB is involved in response to host defense.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
10
|
The tRNA thiolation pathway modulates the intracellular redox state in Escherichia coli. J Bacteriol 2013; 195:2039-49. [PMID: 23457245 DOI: 10.1128/jb.02180-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have performed a screening of hydroxyurea (HU)-sensitive mutants using a single-gene-deletion mutant collection in Escherichia coli K-12. HU inhibits ribonucleotide reductase (RNR), an enzyme that catalyzes the formation of deoxyribonucleotides. Unexpectedly, seven of the mutants lacked genes that are required for the incorporation of sulfur into a specific tRNA modification base, 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), via persulfide relay. We found that the expression of RNR in the mutants was reduced to about one-third both in the absence and presence of HU, while sufficient deoxynucleoside triphosphate (dNTP) was maintained in the mutants in the absence of HU but a shortage occurred in the presence of HU. Trans-supply of an RNR R2 subunit rescued the HU sensitivity of these mutants. The mutants showed high intracellular ATP/ADP ratios, and overexpression of Hda, which catalyzes the conversion of DnaA-ATP to DnaA-ADP, rescued the HU sensitivity of the mutants, suggesting that DnaA-ATP represses RNR expression. The high intracellular ATP/ADP ratios were due to high respiration activity in the mutants. Our data suggested that intracellular redox was inclined toward the reduced state in these mutants, which may explain a change in RNR activity by reduction of the catalytically formed disulfide bond and high respiration activity by the NADH reducing potential. The relation between persulfide relay and intracellular redox is discussed.
Collapse
|
11
|
Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:19311-6. [PMID: 22084087 DOI: 10.1073/pnas.1113664108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure of Escherichia coli to UV light increases expression of NrdAB, the major ribonucleotide reductase leading to a moderate increase in dNTP levels. The role of elevated dNTP levels during translesion synthesis (TLS) across specific replication-blocking lesions was investigated. Here we show that although the specialized DNA polymerase PolV is necessary for replication across UV-lesions, such as cyclobutane pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproduct, Pol V per se is not sufficient. Indeed, efficient TLS additionally requires elevated dNTP levels. Similarly, for the bypass of an N-2-acetylaminofluorene-guanine adduct that requires Pol II instead of PolV, efficient TLS is only observed under conditions of high dNTP levels. We suggest that increased dNTP levels transiently modify the activity balance of Pol III (i.e., increasing the polymerase and reducing the proofreading functions). Indeed, we show that the stimulation of TLS by elevated dNTP levels can be mimicked by genetic inactivation of the proofreading function (mutD5 allele). We also show that spontaneous mutagenesis increases proportionally to dNTP pool levels, thus defining a unique spontaneous mutator phenotype. The so-called "dNTP mutator" phenotype does not depend upon any of the specialized DNA polymerases, and is thus likely to reflect an increase in Pol III's own replication errors because of the modified activity balance of Pol III. As up-regulation of the dNTP pool size represents a common physiological response to DNA damage, the present model is likely to represent a general and unique paradigm for TLS pathways in many organisms.
Collapse
|
12
|
Tsaponina O, Barsoum E, Åström SU, Chabes A. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet 2011; 7:e1002061. [PMID: 21573136 PMCID: PMC3088718 DOI: 10.1371/journal.pgen.1002061] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/14/2011] [Indexed: 12/29/2022] Open
Abstract
The Saccharomyces cerevisiae Dun1 protein kinase is a downstream target of the conserved Mec1-Rad53 checkpoint pathway. Dun1 regulates dNTP pools during an unperturbed cell cycle and after DNA damage by modulating the activity of ribonucleotide reductase (RNR) by multiple mechanisms, including phosphorylation of RNR inhibitors Sml1 and Dif1. Dun1 also activates DNA-damage-inducible genes by inhibiting the Crt1 transcriptional repressor. Among the genes repressed by Crt1 are three out of four RNR genes: RNR2, RNR3, and RNR4. The fourth RNR gene, RNR1, is also DNA damage-inducible, but is not controlled by Crt1. It has been shown that the deletion of DUN1 is synthetic lethal with the deletion of IXR1, encoding an HMG-box-containing DNA binding protein, but the reason for this lethality is not known. Here we demonstrate that the dun1 ixr1 synthetic lethality is caused by an inadequate RNR activity. The deletion of IXR1 results in decreased dNTP levels due to a reduced RNR1 expression. The ixr1 single mutants compensate for the reduced Rnr1 levels by the Mec1-Rad53-Dun1-Crt1–dependent elevation of Rnr3 and Rnr4 levels and downregulation of Sml1 levels, explaining why DUN1 is indispensible in ixr1 mutants. The dun1 ixr1 synthetic lethality is rescued by an artificial elevation of the dNTP pools. We show that Ixr1 is phosphorylated at several residues and that Ser366, a residue important for the interaction of HMG boxes with DNA, is required for Ixr1 phosphorylation. Ixr1 interacts with DNA at multiple loci, including the RNR1 promoter. Ixr1 levels are decreased in Rad53-deficient cells, which are known to have excessive histone levels. A reduction of the histone gene dosage in the rad53 mutant restores Ixr1 levels. Our results demonstrate that Ixr1, but not Dun1, is required for the proper RNR1 expression both during an unperturbed cell cycle and after DNA damage. Dun1 is a non-essential protein kinase important for the maintenance of genome stability in budding yeast. Earlier studies found that simultaneous deletion of DUN1 and IXR1 results in lethality, but the reason for this so-called synthetic lethality is not clear. Ixr1 is implicated in DNA repair based on its ability to bind to DNA modified by the anticancer drug cisplatin. Here, we investigated the mechanism behind the ixr1 dun1 synthetic lethality. We demonstrate that yeast strains lacking Ixr1 have decreased amounts of dNTPs, the building blocks of DNA. This is because Ixr1 is required for the normal expression of Rnr1, one of the essential subunits of the enzyme ribonucleotide reductase (RNR), which catalyzes the rate-limiting step in the production of all four dNTPs. Cells lacking Ixr1 compensate the decreased expression of Rnr1 by the increased expression of other RNR genes and degradation of RNR inhibitors. These compensatory processes require Dun1. Hence, cells lacking both Dun1 and Ixr1 have dNTP pools that are too low for survival. Our work identifies a new important player in the synthesis of the building blocks of DNA.
Collapse
Affiliation(s)
- Olga Tsaponina
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Emad Barsoum
- Department of Developmental Biology, Wennergren Institute, Stockholm University, Stockholm, Sweden
| | - Stefan U. Åström
- Department of Developmental Biology, Wennergren Institute, Stockholm University, Stockholm, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
13
|
Salguero I, López Acedo E, Guzmán EC. Overlap of replication rounds disturbs the progression of replicating forks in a ribonucleotide reductase mutant of Escherichia coli. MICROBIOLOGY-SGM 2011; 157:1955-1967. [PMID: 21527473 DOI: 10.1099/mic.0.047316-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ribonucleotide reductase (RNR) is the only enzyme specifically required for the synthesis of deoxyribonucleotides (dNTPs). Surprisingly, Escherichia coli cells carrying the nrdA101 allele, which codes for a thermosensitive RNR101, are able to replicate entire chromosomes at 42 °C under RNA or protein synthesis inhibition. Here we show that the RNR101 protein is unstable at 42 °C and that its degradation under restrictive conditions is prevented by the presence of rifampicin. Nevertheless, the mere stability of the RNR protein at 42 °C cannot explain the completion of chromosomal DNA replication in the nrdA101 mutant. We found that inactivation of the DnaA protein by using several dnaAts alleles allows complete chromosome replication in the absence of rifampicin and suppresses the nucleoid segregation and cell division defects observed in the nrdA101 mutant at 42 °C. As both inactivation of the DnaA protein and inhibition of RNA synthesis block the occurrence of new DNA initiations, the consequent decrease in the number of forks per chromosome could be related to those effects. In support of this notion, we found that avoiding multifork replication rounds by the presence of moderate extra copies of datA sequence increases the relative amount of DNA synthesis of the nrdA101 mutant at 42 °C. We propose that a lower replication fork density results in an improvement of the progression of DNA replication, allowing replication of the entire chromosome at the restrictive temperature. The mechanism related to this effect is also discussed.
Collapse
Affiliation(s)
- Israel Salguero
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Elena López Acedo
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Elena C Guzmán
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
14
|
Thomassen GOS, Weel-Sneve R, Rowe AD, Booth JA, Lindvall JM, Lagesen K, Kristiansen KI, Bjørås M, Rognes T. Tiling array analysis of UV treated Escherichia coli predicts novel differentially expressed small peptides. PLoS One 2010; 5:e15356. [PMID: 21203457 PMCID: PMC3009722 DOI: 10.1371/journal.pone.0015356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022] Open
Abstract
Background Despite comprehensive investigation, the Escherichia coli SOS response system is not yet fully understood. We have applied custom designed whole genome tiling arrays to measure UV invoked transcriptional changes in E. coli. This study provides a more complete insight into the transcriptome and the UV irradiation response of this microorganism. Results We detected a number of novel differentially expressed transcripts in addition to the expected SOS response genes (such as sulA, recN, uvrA, lexA, umuC and umuD) in the UV treated cells. Several of the differentially expressed transcripts might play important roles in regulation of the cellular response to UV damage. We have predicted 23 novel small peptides from our set of detected non-gene transcripts. Further, three of the predicted peptides were cloned into protein expression vectors to test the biological activity. All three constructs expressed the predicted peptides, in which two of them were highly toxic to the cell. Additionally, a remarkably high overlap with previously in-silico predicted non-coding RNAs (ncRNAs) was detected. Generally we detected a far higher transcriptional activity than the annotation suggests, and these findings correspond with previous transcription mappings from E. coli and other organisms. Conclusions Here we demonstrate that the E. coli transcriptome consists of far more transcripts than the present annotation suggests, of which many transcripts seem important to the bacterial stress response. Sequence alignment of promoter regions suggest novel regulatory consensus sequences for some of the upregulated genes. Finally, several of the novel transcripts identified in this study encode putative small peptides, which are biologically active.
Collapse
Affiliation(s)
- Gard O. S. Thomassen
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ragnhild Weel-Sneve
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alexander D. Rowe
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - James A. Booth
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | | | - Karin Lagesen
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Knut I. Kristiansen
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Magnar Bjørås
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, University of Oslo, Oslo, Norway
- Institute of Clinical Biochemistry, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
15
|
Johnsen L, Flåtten I, Morigen, Dalhus B, Bjørås M, Waldminghaus T, Skarstad K. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Mol Microbiol 2010; 79:433-46. [PMID: 21219462 DOI: 10.1111/j.1365-2958.2010.07453.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.
Collapse
Affiliation(s)
- Line Johnsen
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
16
|
Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell 2010; 36:845-60. [PMID: 20005847 DOI: 10.1016/j.molcel.2009.11.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/13/2009] [Accepted: 08/13/2009] [Indexed: 01/18/2023]
Abstract
Hydroxyurea (HU) specifically inhibits class I ribonucleotide reductase (RNR), depleting dNTP pools and leading to replication fork arrest. Although HU inhibition of RNR is well recognized, the mechanism by which it leads to cell death remains unknown. To investigate the mechanism of HU-induced cell death, we used a systems-level approach to determine the genomic and physiological responses of E. coli to HU treatment. Our results suggest a model by which HU treatment rapidly induces a set of protective responses to manage genomic instability. Continued HU stress activates iron uptake and toxins MazF and RelE, whose activity causes the synthesis of incompletely translated proteins and stimulation of envelope stress responses. These effects alter the properties of one of the cell's terminal cytochrome oxidases, causing an increase in superoxide production. The increased superoxide production, together with the increased iron uptake, fuels the formation of hydroxyl radicals that contribute to HU-induced cell death.
Collapse
Affiliation(s)
- Bryan W Davies
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
17
|
A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS One 2009; 4:e7617. [PMID: 19898675 PMCID: PMC2773459 DOI: 10.1371/journal.pone.0007617] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/04/2009] [Indexed: 11/25/2022] Open
Abstract
Background It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli. Methodology/Principal Findings Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a “delay” in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a “repair structure” during the initial phase of the SOS response. Conclusion/Significance The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation.
Collapse
|
18
|
Sabouri N, Viberg J, Goyal DK, Johansson E, Chabes A. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Res 2008; 36:5660-7. [PMID: 18772226 PMCID: PMC2553575 DOI: 10.1093/nar/gkn555] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The enzyme ribonucleotide reductase, responsible for the synthesis of deoxyribonucleotides (dNTP), is upregulated in response to DNA damage in all organisms. In Saccharomyces cerevisiae, dNTP concentration increases ∼6- to 8-fold in response to DNA damage. This concentration increase is associated with improved tolerance of DNA damage, suggesting that translesion DNA synthesis is more efficient at elevated dNTP concentration. Here we show that in a yeast strain with all specialized translesion DNA polymerases deleted, 4-nitroquinoline oxide (4-NQO) treatment increases mutation frequency ∼3-fold, and that an increase in dNTP concentration significantly improves the tolerance of this strain to 4-NQO induced damage. In vitro, under single-hit conditions, the replicative DNA polymerase ε does not bypass 7,8-dihydro-8-oxoguanine lesion (8-oxoG, one of the lesions produced by 4-NQO) at S-phase dNTP concentration, but does bypass the same lesion with 19–27% efficiency at DNA-damage-state dNTP concentration. The nucleotide inserted opposite 8-oxoG is dATP. We propose that during DNA damage in S. cerevisiae increased dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions.
Collapse
Affiliation(s)
| | | | | | | | - Andrei Chabes
- *To whom correspondence should be addressed. Tel: +46 90 786 5937; Fax: +46 90 786 9795;
| |
Collapse
|
19
|
Løbner-Olesen A, Slominska-Wojewodzka M, Hansen FG, Marinus MG. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes. PLoS One 2008; 3:e2984. [PMID: 18714349 PMCID: PMC2500167 DOI: 10.1371/journal.pone.0002984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/29/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. METHODOLOGY/PRINCIPAL FINDINGS DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. CONCLUSION/SIGNIFICANCE We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart.
Collapse
Affiliation(s)
- Anders Løbner-Olesen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | | | - Flemming G. Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Martin G. Marinus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
20
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
21
|
Herrick J, Sclavi B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 2007; 63:22-34. [PMID: 17229208 DOI: 10.1111/j.1365-2958.2006.05493.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms that synthesize their own DNA have evolved mechanisms for maintaining a constant DNA/cell mass ratio independent of growth rate. The DNA/cell mass ratio is a central parameter in the processes controlling the cell cycle. The co-ordination of DNA replication with cell growth involves multiple levels of regulation. DNA synthesis is initiated at specific sites on the chromosome termed origins of replication, and proceeds bidirectionally to elongate and duplicate the chromosome. These two processes, initiation and elongation, therefore determine the total rate of DNA synthesis in the cell. In Escherichia coli, initiation depends on the DnaA protein while elongation depends on a multiprotein replication factory that incorporates deoxyribonucleotides (dNTPs) into the growing DNA chain. The enzyme ribonucleotide reductase (RNR) is universally responsible for synthesizing the necessary dNTPs. In this review we examine the role RNR plays in regulating the total rate of DNA synthesis in E. coli and, hence, in maintaining constant DNA/cell mass ratios during normal growth and under conditions of DNA stress.
Collapse
|
22
|
Torrents E, Grinberg I, Gorovitz-Harris B, Lundström H, Borovok I, Aharonowitz Y, Sjöberg BM, Cohen G. NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J Bacteriol 2007; 189:5012-21. [PMID: 17496099 PMCID: PMC1951866 DOI: 10.1128/jb.00440-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli possesses class Ia, class Ib, and class III ribonucleotide reductases (RNR). Under standard laboratory conditions, the aerobic class Ia nrdAB RNR genes are well expressed, whereas the aerobic class Ib nrdEF RNR genes are poorly expressed. The class III RNR is normally expressed under microaerophilic and anaerobic conditions. In this paper, we show that the E. coli YbaD protein differentially regulates the expression of the three sets of genes. YbaD is a homolog of the Streptomyces NrdR protein. It is not essential for growth and has been renamed NrdR. Previously, Streptomyces NrdR was shown to transcriptionally regulate RNR genes by binding to specific 16-bp sequence motifs, NrdR boxes, located in the regulatory regions of its RNR operons. All three E. coli RNR operons contain two such NrdR box motifs positioned in their regulatory regions. The NrdR boxes are located near to or overlap with the promoter elements. DNA binding experiments showed that NrdR binds to each of the upstream regulatory regions. We constructed deletions in nrdR (ybaD) and showed that they caused high-level induction of transcription of the class Ib RNR genes but had a much smaller effect on induction of transcription of the class Ia and class III RNR genes. We propose a model for differential regulation of the RNR genes based on binding of NrdR to the regulatory regions. The model assumes that differences in the positions of the NrdR binding sites, and in the sequences of the motifs themselves, determine the extent to which NrdR represses the transcription of each RNR operon.
Collapse
Affiliation(s)
- Eduard Torrents
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Brooks PC, Dawson LF, Rand L, Davis EO. The mycobacterium-specific gene Rv2719c is DNA damage inducible independently of RecA. J Bacteriol 2006; 188:6034-8. [PMID: 16885473 PMCID: PMC1540060 DOI: 10.1128/jb.00340-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 05/31/2006] [Indexed: 02/05/2023] Open
Abstract
The mycobacterium-specific gene Rv2719c was found to be expressed primarily from a promoter that was clearly DNA damage inducible independently of RecA. Upstream of the transcriptional start site for this promoter, sequence motifs resembling those observed previously at the RecA-independent, DNA damage-inducible recA promoter were identified, and the -10 motif was demonstrated by mutational analysis in transcriptional fusion constructs to be important for expression of Rv2719c.
Collapse
Affiliation(s)
- Patricia C Brooks
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, United Kingdom
| | | | | | | |
Collapse
|
24
|
Boston T, Atlung T. FNR-mediated oxygen-responsive regulation of the nrdDG operon of Escherichia coli. J Bacteriol 2003; 185:5310-3. [PMID: 12923108 PMCID: PMC180968 DOI: 10.1128/jb.185.17.5310-5313.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the nrdDG operon, which encodes the class III nucleotide reductase, which is only active under anaerobic conditions, was strongly induced after a shift to anaerobiosis. The induction was completely dependent on the transcriptional activator FNR and was independent of the ArcA-ArcB two-component response regulator system. The nrdD transcript start site was mapped to a position immediately downstream of two FNR binding sites. Transcription of the other two nucleotide reductase operons, nrdAB and nrdEF, did not respond to oxygen conditions in a wild-type background, but nrdAB expression was increased in the fnr mutant under anaerobic conditions.
Collapse
Affiliation(s)
- T Boston
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | |
Collapse
|
25
|
Davis EO, Springer B, Gopaul KK, Papavinasasundaram KG, Sander P, Böttger EC. DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol 2002; 46:791-800. [PMID: 12410836 DOI: 10.1046/j.1365-2958.2002.03199.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous and highly conserved RecA protein is generally expressed from a single promoter, which is regulated by LexA in conjunction with RecA. We show here using transcriptional fusions to a reporter gene that the Mycobacterium tuberculosis recA gene is expressed from two promoters. Although one promoter is clearly regulated in the classical way, the other remains DNA damage inducible in the absence of RecA or when LexA binding is prevented. These observations demonstrate convincingly for the first time that there is a novel mechanism of DNA damage induction in M. tuberculosis that is independent of LexA and RecA.
Collapse
Affiliation(s)
- Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Masalha M, Borovok I, Schreiber R, Aharonowitz Y, Cohen G. Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J Bacteriol 2001; 183:7260-72. [PMID: 11717286 PMCID: PMC95576 DOI: 10.1128/jb.183.24.7260-7272.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a gram-positive facultative aerobe that can grow in the absence of oxygen by fermentation or by using an alternative electron acceptor. To investigate the mechanism by which S. aureus is able to adapt to changes in oxygen concentration, we analyzed the transcriptional regulation of genes that encode the aerobic class Ib and anaerobic class III ribonucleotide reductase (RNR) systems that are responsible for the synthesis of deoxyribonucleotides needed for DNA synthesis. The S. aureus class Ib RNR nrdIEF and class III RNR nrdDG genes and their regulatory regions were cloned and sequenced. Inactivation of the nrdDG genes showed that the class III RNR is essential for anaerobic growth. Inhibition of aerobic growth by hydroxyurea showed that the class Ib RNR is an oxygen-dependent enzyme. Northern blot analysis and primer extension analysis demonstrated that transcription of class III nrdDG genes is regulated by oxygen concentration and was at least 10-fold higher under anaerobic than under aerobic conditions. In contrast, no significant effect of oxygen concentration was found on the transcription of class Ib nrdIEF genes. Disruption or deletion of S. aureus nrdDG genes caused up to a fivefold increase in nrdDG and nrdIEF transcription under anaerobic conditions but not under aerobic conditions. Similarly, hydroxyurea, an inhibitor of the class I RNRs, resulted in increased transcription of class Ib and class III RNR genes under aerobic conditions. These findings establish that transcription of class Ib and class III RNR genes is upregulated under conditions that cause the depletion of deoxyribonucleotide. Promoter analysis of class Ib and class III RNR operons identified several inverted-repeat elements that may account for the transcriptional response of the nrdIEF and nrdDG genes to oxygen.
Collapse
Affiliation(s)
- M Masalha
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
27
|
Gallardo-Madueño R, Leal JF, Dorado G, Holmgren A, López-Barea J, Pueyo C. In vivo transcription of nrdAB operon and of grxA and fpg genes is triggered in Escherichia coli lacking both thioredoxin and glutaredoxin 1 or thioredoxin and glutathione, respectively. J Biol Chem 1998; 273:18382-8. [PMID: 9660805 DOI: 10.1074/jbc.273.29.18382] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously described () that Escherichia coli maintains a balanced supply of deoxyribonucleotides by a regulatory mechanism that up-regulates the levels of ribonucleotide reductase with the lack of its main hydrogen donors thioredoxin, glutaredoxin 1, and glutathione (GSH). By using a semi-quantitative reverse transcription/multiplex polymerase chain reaction fluorescent procedure that enables simultaneous analysis of up to seven mRNA species, we now demonstrate that regulation operates at the transcriptional level. Double mutant cells lacking both thioredoxin and glutaredoxin 1 had increased transcription of the nrdAB operon, as compared with the corresponding wild type parent (maximal induction of 10- and 9-fold for mRNA of nrdA and nrdB genes, respectively). Likewise, a dramatic increase of 36-fold in grxA mRNA was observed in bacteria simultaneously deficient in thioredoxin and GSH (the physiological reductant of all glutaredoxins). The increased expression of the grxA gene in trxA gshA double mutant bacteria was mimicked in trxA single mutant cells by depletion of GSH with diethylmaleate (DEM). This induction of grxA transcription was rapid since maximal increase was detected upon 10 min of DEM exposure. Like grxA expression, the basal level of fpg mRNA, encoding formamidopyrimidine-DNA glycosylase, was increased (about 4-fold) in a trxA gshA double mutant strain; this expression was also induced upon exposure to DEM (11-fold maximal induction). These results suggest that transcription of grxA might share common redox regulatory mechanism(s) with that of the fpg gene, involved in the repair of 8-oxoguanine in DNA.
Collapse
Affiliation(s)
- R Gallardo-Madueño
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071-Córdoba, España
| | | | | | | | | | | |
Collapse
|
28
|
Jordan A, Gibert I, Barbé J. Two different operons for the same function: comparison of the Salmonella typhimurium nrdAB and nrdEF genes. Gene 1995; 167:75-9. [PMID: 8566815 DOI: 10.1016/0378-1119(95)00656-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By using a P22 phage-mediated cloning system, the nrdAB genes of Salmonella typhimurium (St), encoding a ribonucleotide reductase (RR) of class I, have been isolated. The coding regions of the St nrdAB operon show a very high identity with those of the homologous operon of Escherichia coli (Ec). Nevertheless, there are significant differences in their promoter regions since, although the promoters of both operons present two DnaA boxes, these boxes are located downstream from the transcription start point in St, being upstream in Ec. Moreover, the deduced amino-acid sequences of the St nrdAB showed a very limited overall identity (28%) with the products of St nrdEF, which encode a second class-I RR. Expression of St nrdAB and nrdEF is inducible by hydroxyurea, an inhibitor of RR activity. Alignment of the promoter regions of the nrdAB and nrdEF operons of both St and Ec reveals the presence of a consensus sequence. St is the first organism from which two different RR belonging to the same biochemical class are known.
Collapse
Affiliation(s)
- A Jordan
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
29
|
Jordan A, Gibert I, Barbé J. Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol 1994; 176:3420-7. [PMID: 8195103 PMCID: PMC205520 DOI: 10.1128/jb.176.11.3420-3427.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A plasmid library of Salmonella typhimurium was used to complement a temperature-sensitive nrdA mutant of Escherichia coli. Complementation was obtained with two different classes of plasmids, one carrying the E. coli nrdAB-like genes and the second containing an operon encoding a new bacterial ribonucleotide reductase. Plasmids harboring these new reductase genes also enable obligately anaerobic nrdB::Mud1 E. coli mutants to grow in the presence of oxygen. This operon consists of two open reading frames, which have been designated nrdE (2,145 bp) and nrdF (969 bp). The deduced amino acid sequences of the nrdE and nrdF products include the catalytically important residues conserved in ribonucleotide reductase enzymes of class I and show 25 and 28% overall identity with the R1 and R2 protein, respectively, of the aerobic ribonucleoside diphosphate reductase of E. coli. The 3' end of the sequenced 4.9-kb fragment corresponds to the upstream region of the previously published proU operon of both S. typhimurium and E. coli, indicating that the nrdEF genes are at 57 min on the chromosomal maps of these two bacterial species. Analysis of the nrdEF and proU sequences demonstrates that transcription of the nrdEF genes is in the clockwise direction on the S. typhimurium and E. coli maps.
Collapse
Affiliation(s)
- A Jordan
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellatera, Spain
| | | | | |
Collapse
|
30
|
Miranda-Vizuete A, Martinez-Galisteo E, Aslund F, Lopez-Barea J, Pueyo C, Holmgren A. Null thioredoxin and glutaredoxin Escherichia coli K-12 mutants have no enhanced sensitivity to mutagens due to a new GSH-dependent hydrogen donor and high increases in ribonucleotide reductase activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89436-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Abstract
Following exposure to UV light DNA replication stops and then resumes. The SOS response is required for the restoration of replication. Replication recovery occurs in lexA(Ind) cells carrying a high constitutive level of RecA protein. Replication is also affected by UmuCD proteins, photoreactivation, and excision repair. In addition, there is a constitutive and recA independent way to replicate over UV photoproducts associated with the production of gaps in daughter DNA strands. There are two ways to account for the replication in UV-irradiated cells. A stalled replication fork can be reactivated. Alternatively, a replication fork could be destroyed irreparably, with no available way to complete the round of replication. In that case, postirradiation replication could be due exclusively to replication forks assembled de novo at the origin(s). Changes in replication initiation are observed following UV irradiation. Initiations are first inhibited and then stimulated. They become independent of de novo protein synthesis and sometimes do not stop in dnaA(ts) mutants shifted to 42 degrees C. Although the inducible functions are involved in the recovery of replication at different levels of UV damage, some modifications of the replication initiation mechanism appear to be specific to severely damaged cells. Such modifications seem to include the dnaA(ts) independence for initiations and the transient initiation inhibition. RecA protein can be directly involved both in the modification of initiation and in reactivation of the stalled replication forks. Although the restoration of replication depends on the SOS response a synthesis of some protein(s) that do not belong to the LexA regulon seems to be required as well. These proteins can be under RecA control and one of their functions may be to inhibit the rnhA gene. Certain recA mutations may selectively affect different mechanisms of the replication recovery (namely, recA430, recA727, recA718, recA1730). Overproduction of the photoreactivating enzyme in the dark could influence UmuCD activity in replication. The UmuCD function appears to be blocked in strains carrying the dnaE1026 mutation or overproducing the dnaQ protein. For some unknown reason the UmuCD-associated replication mechanism is the only one available for phage with damaged DNA.
Collapse
|
32
|
Pueyo M, Gibert I, Barbé J. Relationship between the functional regions of the RecA protein and ATP hydrolysis in UV-irradiated Escherichia coli cells. Mutat Res 1992; 293:21-30. [PMID: 1383807 DOI: 10.1016/0921-8777(92)90004-m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The time course of the intracellular ATP concentration in several UV-irradiated RecA protease constitutive (Cptc) mutants of E. coli has been studied. All Cptc mutants harboring a mutation in region 3 of the RecA protein (including amino acid residues 298-301) increased ATP after UV damage but without any subsequent decrease. Nevertheless, these mutants induced the SOS response after UV irradiation. Likewise, truncated RecA proteins lacking region 3 are also unable to carry out massive ATP hydrolysis in UV-irradiated cells. On the other hand, mutants in region 1 (including amino acids 25-39) or 2 (amino acids 157-184) of the RecA protein showed an increase in ATP concentration during the first 20 min following UV irradiation, which dropped afterwards to the basal level. All these data indicate that region 3 of the RecA protein must be involved in the ATP hydrolysis process. Furthermore, a relationship between the quantity of the UV-mediated ATP produced and the strength of the different RecA Cptc mutants has also been found. Accordingly, both lexA71::Tn5 and null lexA mutants of E. coli only show a cellular ATP increase after UV irradiation when containing a multicopy plasmid carrying either a wild-type lexA or a lexA (Ind-) gene.
Collapse
Affiliation(s)
- M Pueyo
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
33
|
Abstract
A system to isolate lexA-like genes of bacteria directly was developed. It is based upon the fact that the presence of a lexA(Def) mutation is lethal to SulA+ cells of Escherichia coli. This system is composed of a SulA- LexA(Def) HsdR- strain and a lexA-conditional killer vector (plasmid pUA165) carrying the wild-type sulA gene of E. coli and a polylinker in which foreign DNA may be inserted. By using this method, the lexA-like genes of Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa, and P. putida were cloned. We also found that the LexA repressor of S. typhimurium presented the highest affinity for the SOS boxes of E. coli in vivo, whereas the LexA protein of P. aeruginosa had the lowest. Likewise, all of these LexA repressors were cleaved by the activated RecA protein of E. coli after DNA damage. Furthermore, under high-stringency conditions, the lexA gene of E. coli hybridized with the lexA genes of S. typhimurium and E. carotovora but not with those of P. aeruginosa and P. putida.
Collapse
Affiliation(s)
- S Calero
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
34
|
Casado C, Llagostera M, Barbé J. Expression ofnrdAandnrdBgenes ofEscherichia coliis decreased under anaerobiosis. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04432.x-i1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Fernandez de Henestrosa AR, Calero S, Barbé J. Expression of the recA gene of Escherichia coli in several species of gram-negative bacteria. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:503-6. [PMID: 2038310 DOI: 10.1007/bf00260664] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A broad host range plasmid containing an operon fusion between the recA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria-30 species belonging to 20 different genera - to study the expression of the recA gene after DNA damage. These included species of the families Enterobacteriaceae, Pseudomonadaceae. Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae and Azotobacteraceae. Results obtained show that all bacteria tested, except Xanthomonas campestris and those of the genus Rhodobacter, are able to repress and induce the recA gene of E. coli in the absence and in the presence of DNA damage, respectively. All these data indicate that the SOS system is present in bacterial species of several families and that the LexA-binding site must be very conserved in them.
Collapse
|
36
|
Tseng MJ, He P, Hilfinger JM, Greenberg GR. Bacteriophage T4 nrdA and nrdB genes, encoding ribonucleotide reductase, are expressed both separately and coordinately: characterization of the nrdB promoter. J Bacteriol 1990; 172:6323-32. [PMID: 2228963 PMCID: PMC526816 DOI: 10.1128/jb.172.11.6323-6332.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined the expression of the bacteriophage T4 nrdA and nrdB genes, which encode the alpha 2 and beta 2 subunits, respectively, of ribonucleoside diphosphate reductase, the first committed enzyme in the pathway of synthesis of the deoxyribonucleoside triphosphates. T4 nrdA, located 700 bp upstream from nrdB, has been shown previously to be transcribed by two major transcripts: a prereplicative, polycistronic message, TU, orginating at an immediate-early promoter, PE, that is 3.5 kb upstream from nrdA, and a postreplicative message commencing from a late promoter in its 5' flank. We have found a third promoter initiating a transcript at 159 nucleotides upstream from the reading frame of nrdB. PnrdB functions only in the presence of the T4 motA gene product, which is required for middle (time) promoters, and therefore the onset of nrdB transcription is delayed more than 2 min after infection. Because of the distance of nrdA from PE, the inception of nrdA transcription (delayed early) coincides closely with that of nrdB. An apparent termination site, tA, occurs about 80 bp downstream from nrdA. Some of the polycistronic mRNA reading through the site after 5 min contributes to nrdB transcription. nrdA and nrdB genes in an uninfected host have been reported to be transcribed only coordinately. In contrast, T4 nrdA and nrdB are initially transcribed separately onto the PE and PnrdB transcripts, respectively, but at about 5 min after infection are transcribed both coordinately and on separate transcripts. Evidence is presented that TU coordinately transcribes a deoxyribonucleotide operon in the order: frd, td, gene 'Y,' nrdA, nrdB. Since the beta 2 subunit is known to be formed after the alpha 2 subunit, the expression of the nrdB gene determines the onset of deoxyribonucleoside triphosphate synthesis and thus of T4 DNA replication.
Collapse
Affiliation(s)
- M J Tseng
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | | | |
Collapse
|