1
|
Lera-Ramírez M, Bähler J, Mata J, Rutherford K, Hoffman CS, Lambert S, Oliferenko S, Martin SG, Gould KL, Du LL, Sabatinos SA, Forsburg SL, Nielsen O, Nurse P, Wood V. Revised fission yeast gene and allele nomenclature guidelines for machine readability. Genetics 2023; 225:iyad143. [PMID: 37758508 PMCID: PMC10627252 DOI: 10.1093/genetics/iyad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023] Open
Abstract
Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.
Collapse
Affiliation(s)
- Manuel Lera-Ramírez
- University College London, Department of Genetics Evolution and Environment, Darwin Building, 99-105 Gower Street, London WC1E 6BT, UK
| | - Jürg Bähler
- University College London, Department of Genetics Evolution and Environment, Darwin Building, 99-105 Gower Street, London WC1E 6BT, UK
| | - Juan Mata
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| | - Kim Rutherford
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| | | | - Sarah Lambert
- Institut Curie, Université Paris-Saclay, CNRS UMR3348, Orsay 91400, France
| | - Snezhana Oliferenko
- The Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, UK
| | - Sophie G Martin
- University of Geneva, Department of Molecular and Cellular Biology, Geneva 1211, Switzerland
| | - Kathleen L Gould
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232, USA
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sarah A Sabatinos
- Toronto Metropolitan University, Department of Chemistry & Biology, Toronto M5B 2K3, Canada
| | - Susan L Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Olaf Nielsen
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, Copenhagen N DK2100, Denmark
| | - Paul Nurse
- The Francis Crick Institute, London NW1 1AT, UK
| | - Valerie Wood
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| |
Collapse
|
2
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
3
|
Mukiza TO, Protacio RU, Davidson MK, Steiner WW, Wahls WP. Diverse DNA Sequence Motifs Activate Meiotic Recombination Hotspots Through a Common Chromatin Remodeling Pathway. Genetics 2019; 213:789-803. [PMID: 31511300 PMCID: PMC6827382 DOI: 10.1534/genetics.119.302679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
In meiosis, multiple different DNA sequence motifs help to position homologous recombination at hotspots in the genome. How do the seemingly disparate cis-acting regulatory modules each promote locally the activity of the basal recombination machinery? We defined molecular mechanisms of action for five different hotspot-activating DNA motifs (M26, CCAAT, Oligo-C, 4095, 4156) located independently at the same site within the ade6 locus of the fission yeast Schizosaccharomyces pombe Each motif promoted meiotic recombination (i.e., is active) within this context, and this activity required the respective binding proteins (transcription factors Atf1, Pcr1, Php2, Php3, Php5, Rst2). High-resolution analyses of chromatin structure by nucleosome scanning assays revealed that each motif triggers the displacement of nucleosomes surrounding the hotspot motif in meiosis. This chromatin remodeling required the respective sequence-specific binding proteins, was constitutive for two motifs, and was enhanced meiotically for three others. Hotspot activity of each motif strongly required the ATP-dependent chromatin remodeling enzyme Snf22 (Snf2/Swi2), with lesser dependence on Gcn5, Mst2, and Hrp3. These findings support a model in which most meiotic recombination hotspots are positioned by the binding of transcription factors to their respective DNA sites. The functional redundancy of multiple, sequence-specific protein-DNA complexes converges upon shared chromatin remodeling pathways that help provide the basal recombination machinery (Spo11/Rec12 complex) access to its DNA substrates within chromatin.
Collapse
Affiliation(s)
- Tresor O Mukiza
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Walter W Steiner
- Department of Biology, Niagara University, Lewiston, New York 14109
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| |
Collapse
|
4
|
A Brief History of Schizosaccharomyces pombe Research: A Perspective Over the Past 70 Years. Genetics 2017; 203:621-9. [PMID: 27270696 DOI: 10.1534/genetics.116.189407] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since its humble start as a model organism in two European laboratories in the 1940s and 1950s, the fission yeast Schizosaccharomyces pombe has grown to become one of the best-studied eukaryotes today. This article outlines the way in which interest in S. pombe developed and spread from Europe to Japan, North America, and elsewhere from its beginnings up to the first International Meeting devoted to this yeast in 1999. We describe the expansion of S. pombe research during this period with an emphasis on many of the individual researchers involved and their interactions that resulted in the development of today's vibrant community.
Collapse
|
5
|
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
6
|
Stiefel J, Wang L, Kelly DA, Janoo RTK, Seitz J, Whitehall SK, Hoffman CS. Suppressors of an adenylate cyclase deletion in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 3:610-9. [PMID: 15189983 PMCID: PMC420129 DOI: 10.1128/ec.3.3.610-619.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizosaccharomyces pombe utilizes two opposing signaling pathways to sense and respond to its nutritional environment. Glucose detection triggers a cyclic AMP signal to activate protein kinase A (PKA), while glucose or nitrogen starvation activates the Spc1/Sty1 stress-activated protein kinase (SAPK). One process controlled by these pathways is fbp1+ transcription, which is glucose repressed. In this study, we isolated strains carrying mutations that reduce high-level fbp1+ transcription conferred by the loss of adenylate cyclase (git2delta), including both wis1- (SAPK kinase) and spc1- (SAPK) mutants. While characterizing the git2delta suppressor strains, we found that the git2delta parental strains are KCl sensitive, though not osmotically sensitive. Of 102 git2delta suppressor strains, 17 strains display KCl-resistant growth and comprise a single linkage group, carrying mutations in the cgs1+ PKA regulatory subunit gene. Surprisingly, some of these mutants are mostly wild type for mating and stationary-phase viability, unlike the previously characterized cgs1-1 mutant, while showing a significant defect in fbp1-lacZ expression. Thus, certain cgs1- mutant alleles dramatically affect some PKA-regulated processes while having little effect on others. We demonstrate that the PKA and SAPK pathways regulate both cgs1+ and pka1+ transcription, providing a mechanism for cross talk between these two antagonistically acting pathways and feedback regulation of the PKA pathway. Finally, strains defective in both the PKA and SAPK pathways display transcriptional regulation of cgs1+ and pka1+, suggesting the presence of a third glucose-responsive signaling pathway.
Collapse
Affiliation(s)
- Jeffrey Stiefel
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Yu H, Hatzivassiloglou V, Rzhetsky A, Wilbur WJ. Automatically identifying gene/protein terms in MEDLINE abstracts. J Biomed Inform 2002; 35:322-30. [PMID: 12968781 DOI: 10.1016/s1532-0464(03)00032-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
MOTIVATION Natural language processing (NLP) techniques are used to extract information automatically from computer-readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein-protein interactions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for "gene/protein-full name mark up"), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g., LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation. RESULTS GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts. AVAILABILITY A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 212-939-7028; fax: 212-666-0140.
Collapse
Affiliation(s)
- Hong Yu
- Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
8
|
Bozsik A, Szilagyi Z, Benko Z, Sipiczki M. Marker construction and cloning of a cut1-like sequence with ARS activity in the fission yeast Schizosaccharomyces japonicus. Yeast 2002; 19:485-98. [PMID: 11921097 DOI: 10.1002/yea.853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dimorphic fission yeast Schizosaccharomyces japonicus has proved to be an excellent experimental model for the investigation of the eukaryotic cell. Here we show that it has a haplontic life cycle, in which the diploid phase is confined to the zygote. To make it amenable to genetic and molecular analysis, we generated genetic markers and cloned a genomic sequence which acts as ars when integrated into a plasmid. Diploids suitable for testing complementation and recombination between markers can be formed by protoplast fusion. The complementation tests and the recombination frequencies determined in octads of spores identified 28 non-allelic groups (genes) of mutations of the auxotrophic and mycelium-negative mutants. Two groups of linked markers were also identified. The cloned fragment, which expresses ars activity, encodes a putative amino acid sequence highly similar to a conserved domain of proteins Cut1 (Schizosaccharomyces pombe), BimB (Aspergillus nidulans) and Esp1 (Saccharomyces cerevisiae).
Collapse
Affiliation(s)
- Aniko Bozsik
- Department of Genetics, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
9
|
Landry S, Pettit MT, Apolinario E, Hoffman CS. The fission yeast git5 gene encodes a Gbeta subunit required for glucose-triggered adenylate cyclase activation. Genetics 2000; 154:1463-71. [PMID: 10747045 PMCID: PMC1461029 DOI: 10.1093/genetics/154.4.1463] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fission yeast adenylate cyclase is activated by the gpa2 Galpha subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gbeta subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Galpha involved in the pheromone response pathway. While 43% identical to mammalian Gbeta's, the git5 protein lacks the amino-terminal coiled-coil found in other Gbeta subunits, yet the gene possesses some of the coding capacity for this structure 5' to its ORF. Although both gpa2 (Galpha) and git5 (Gbeta) are required for adenylate cyclase activation, only gpa2 is needed to maintain basal cAMP levels. Strains bearing a git5 disruption are derepressed for fbp1 transcription and sexual development even while growing in a glucose-rich environment, although fbp1 derepression is half that observed in gpa2 deletion strains. Multicopy gpa2 partially suppresses the loss of git5, while the converse is not true. These data suggest that Gbeta is required for activation of adenylate cyclase either by promoting the activation of Galpha or by independently activating adenylate cyclase subsequent to Galpha stimulation as seen in type II mammalian adenylate cyclase activation.
Collapse
Affiliation(s)
- S Landry
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
10
|
Bourguignon LY, Zhu H, Shao L, Zhu D, Chen YW. Rho-kinase (ROK) promotes CD44v(3,8-10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. CELL MOTILITY AND THE CYTOSKELETON 1999; 43:269-87. [PMID: 10423269 DOI: 10.1002/(sici)1097-0169(1999)43:4<269::aid-cm1>3.0.co;2-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metastatic breast tumor Met-1 cells express CD44v(3,8-10), a major adhesion receptor that binds extracellular matrix components at its extracellular domain and interacts with the cytoskeletal protein, ankyrin, at its cytoplasmic domain. In this study, we have determined that CD44v(3,8-10) and RhoA GTPases are physically associated in vivo, and that CD44v(3,8-10)-bound RhoA displays GTPase activity, which can be inhibited by botulinum toxin C3-mediated ADP-ribosylation. In addition, we have identified a 160 kDa Rho-Kinase (ROK) as one of the downstream targets for CD44v(3,8-10)-bound RhoA GTPase. Specifically, RhoA (complexed with CD44v(3, 8-10)) stimulates ROK-mediated phosphorylation of certain cellular proteins including the cytoplasmic domain of CD44v(3,8-10). Most importantly, phosphorylation of CD44v(3,8-10) by ROK enhances its interaction with the cytoskeletal protein, ankyrin. We have also constructed two ROK cDNA constructs that encode for proteins consisting of 537 amino acids [designated as the constitutively active form of ROK containing the catalytic domain (CAT, also the kinase domain)], and 173 amino acids [designated as the dominant-negative form of ROK containing the Rho-binding domain (RB)]. Microinjection of the ROK's CAT domain into Met-1 cells promotes CD44-ankyrin associated membrane ruffling and projections. This membrane motility can be blocked by CD44 antibodies and cytochalasin D (a microfilament inhibitor). Furthermore, overexpression of a dominant-negative form of ROK by transfection of Met-1 cells with ROK's Rho-binding (RB) domain cDNA effectively inhibits CD44-ankyrin-mediated metastatic behavior (e.g., membrane motility and tumor cell migration). These findings support the hypothesis that ROK plays a pivotal role in CD44v(3,8-10)-ankyrin interaction and RhoA-mediated oncogenic signaling required for membrane-cytoskeleton function and metastatic tumor cell migration.
Collapse
Affiliation(s)
- L Y Bourguignon
- Department of Cell Biology and Anatomy, University of Miami Medical School, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
11
|
Gross T, Käufer NF. Cytoplasmic ribosomal protein genes of the fission yeast Schizosaccharomyces pombe display a unique promoter type: a suggestion for nomenclature of cytoplasmic ribosomal proteins in databases. Nucleic Acids Res 1998; 26:3319-22. [PMID: 9649613 PMCID: PMC147705 DOI: 10.1093/nar/26.14.3319] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.
Collapse
Affiliation(s)
- T Gross
- Institut für Genetik-Biozentrum, Technical University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | | |
Collapse
|
12
|
Schäfer B, Kaulich K, Wolf K. Mosaic structure of the cox2 gene in the petite negative yeast Schizosaccharomyces pombe: a group II intron is inserted at the same location as the otherwise unrelated group II introns in the mitochondria of higher plants. Gene 1998; 214:101-12. [PMID: 9651494 DOI: 10.1016/s0378-1119(98)00204-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In contrast to homologous genes in other fungal mitochondrial genomes, the gene encoding subunit 2 of cytochrome oxidase (cox2) in several Schizosaccharomyces pombe strains contains a large group II intron. Its 2436 nucleotides can be folded into a typical group II intron secondary structure, possessing all the expected sequence motifs for subgroup IIA1 (Michel et al., 1989). This intron is remarkable for the following reasons: (i) Five nucleotide changes were observed compared with the continuous form of the cox2 gene in the reference strain 50 at the 3'-exon sequence, but not in the 5'-exon. (ii) One of these changes occurred at the splice point leading to a serine instead of a threonine residue in the deduced cox2 polypeptide. In all cases, the alterations resulted in the replacement of more frequently used codons by rare ones. (iii) Although the intron is able to undergo splicing, the sequence motifs thought to be necessary for interaction between the 5'-exon and the intron during the splicing process (the EBS1/IBS1 as well as the EBS2/IBS2 pairings) are unusual. (iv) The intron is inserted at the same location in the cox2 gene as the otherwise unrelated intron from higher plants.
Collapse
Affiliation(s)
- B Schäfer
- Institut für Biologie IV (Mikrobiologie) der Rheinisch-Westfälischen Technischen Hochschule Aachen, Worringer Weg, D-52074, Aachen,
| | | | | |
Collapse
|
13
|
Bhattacherjee V, Bhattacharjee JK. Nucleotide sequence of the Schizosaccharomyces pombe lys1+ gene and similarities of the lys1+ protein to peptide antibiotic synthetases. Yeast 1998; 14:479-84. [PMID: 9559555 DOI: 10.1002/(sici)1097-0061(19980330)14:5<479::aid-yea236>3.0.co;2-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 4.2 kbp lys1+ gene of Schizosaccharomyces pombe encoding the large subunit of alpha-aminoadipate reductase (EC1.2.1.31), an enzyme specific to lysine synthesis in higher fungi, was completely sequenced at the nucleotide level from pLYS1H. The S. pombe lys1+ gene product consists of 1415 amino acid residues and has a putative molecular weight of 155.8 kDa. The encoded protein converts alpha-aminoadipic acid to alpha-aminoadipate-delta-semialdehyde by an ATP-mediated adenylation. Analysis of the sequence showed that the putative protein encoded by lys1+ shares strong homology with the peptide antibiotic synthetases which also use in adenylation step.
Collapse
Affiliation(s)
- V Bhattacherjee
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
14
|
Schizosaccharomyces pombe. Trends Genet 1998. [DOI: 10.1016/s0168-9525(98)80005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP. Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 1997; 94:13765-70. [PMID: 9391101 PMCID: PMC28381 DOI: 10.1073/pnas.94.25.13765] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
Homologous recombination hotspots increase the frequency of recombination in nearby DNA. The M26 hotspot in the ade6 gene of Schizosaccharomyces pombe is a meiotic hotspot with a discrete, cis-acting nucleotide sequence (5'-ATGACGT-3') defined by extensive mutagenesis. A heterodimeric M26 DNA binding protein, composed of subunits Mts1 and Mts2, has been identified and purified 40,000-fold. Cloning, disruption, and genetic analyses of the mts genes demonstrate that the Mts1/Mts2 heterodimer is essential for hotspot activity. This provides direct evidence that a specific trans-acting factor, binding to a cis-acting site with a unique nucleotide sequence, is required to activate this meiotic hotspot. Intriguingly, the Mts1/Mts2 protein subunits are identical to the recently described transcription factors Atf1 (Gad7) and Pcr1, which are required for a variety of stress responses. However, we report differential dependence on the Mts proteins for hotspot activation and stress response, suggesting that these proteins are multifunctional and have distinct activities. Furthermore, ade6 mRNA levels are equivalent in hotspot and nonhotspot meioses and do not change in mts mutants, indicating that hotspot activation is not a consequence of elevated transcription levels. These findings suggest an intimate but separable link between the regulation of transcription and meiotic recombination. Other studies have recently shown that the Mts1/Mts2 protein and M26 sites are involved in meiotic recombination elsewhere in the S. pombe genome, suggesting that these factors help regulate the timing and distribution of homologous recombination.
Collapse
Affiliation(s)
- N Kon
- Department of Biochemistry, Vanderbilt University School of Medicine, 621 Light Hall, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
16
|
Gast RJ, Ledee DR, Fuerst PA, Byers TJ. Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. J Eukaryot Microbiol 1996; 43:498-504. [PMID: 8976608 DOI: 10.1111/j.1550-7408.1996.tb04510.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Classification of Acanthamoeba at the subgenus level has been problematic, but increasing reports of Acanthamoeba as an opportunistic human pathogen have generated an interest in finding a more consistent basis for classification. Thus, we are developing a classification scheme based on RNA gene sequences. This first report is based on analysis of complete sequences of nuclear small ribosomal subunit RNA genes (Rns) from 18 strains. Sequence variation was localized in 12 highly variable regions. Four distinct sequence types were identified based on parsimony and distance analyses. Three were obtained from single strains: Type T1 from Acanthamoeba castellanii V006, T2 from Acanthamoeba palestinensis Reich, and T3 from Acanthamoeba griffini S-7. T4, the fourth sequence type, included 15 isolates classified as A. castellanii, Acanthamoeba polyphaga, Acanthamoeba rhysodes or Acanthamoeba sp., and included all 10 Acanthamoeba keratitis isolates. Interstrain sequence differences within T4 were 0%-4.3%, whereas differences among sequence types were 6%-12%. Branching orders obtained by parsimony and distance analyses were inconsistent with the current classification of T4 strains and provided further evidence of a need to reevaluate criteria for classification in this genus. Based on this report and others in preparation, we propose that Rns sequence types provide the consistent quantititive basis for classification that is needed.
Collapse
Affiliation(s)
- R J Gast
- Department of Molecular Genetics, Ohio State University, Columbus 43210-1292, USA
| | | | | | | |
Collapse
|
17
|
Stettler S, Warbrick E, Prochnik S, Mackie S, Fantes P. The wis1 signal transduction pathway is required for expression of cAMP-repressed genes in fission yeast. J Cell Sci 1996; 109 ( Pt 7):1927-35. [PMID: 8832415 DOI: 10.1242/jcs.109.7.1927] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wis1 protein kinase of Schizosaccharomyces pombe is a member of the MAP kinase kinase family. Loss of wis1 function has previously been reported to lead to a delay in the G2-mitosis transition, loss of viability in stationary phase, and hypersensitivity to osmotic shock. It acts at least in part by activating the MAP kinase homologue sty1; loss-of-function sty1 mutants share many phenotypes with wis1 deletion mutants. We show here that, in addition, loss of wis1 function leads to defective conjugation, and to suppression of the hyperconjugation phenotype of the pat1-114 mutation. Consistent with this, the induction of the mei2 gene, which is normally induced by nitrogen starvation, is defective in wis1 mutants. In wild-type cells, nitrogen starvation leads to mei2 induction through a fall in intracellular cyclic AMP (cAMP) level and activity of the cAMP-dependent protein kinase. We show here that wis1 function is required for mei2 induction following nitrogen starvation. Expression of the fbp1 gene is negatively regulated by cAMP in response to glucose limitation: induction of fbp1 also requires wis1 and sty1 function. Loss of wis1 is epistatic over increased fbp1 expression brought about by loss of adenylate cyclase (git2/cyr1) or cAMP-dependent protein kinase (pka1) function. These observations can be explained by a model in which the pka1 pathway negatively regulates the wis1 pathway, or the two pathways might act independently on downstream targets. The latter explanation is supported, at least as regards regulation of cell division, by the observation that loss of function of the regulatory subunit of the cAMP-dependent protein kinase (cgs1) brings about a modest increase in cell length at division in both wis1+ and wis1 delta genetic backgrounds.
Collapse
Affiliation(s)
- S Stettler
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
18
|
Santo PD, Blanchard B, Hoffman CS. The Schizosaccharomyces pombe pyp1 protein tyrosine phosphatase negatively regulates nutrient monitoring pathways. J Cell Sci 1996; 109 ( Pt 7):1919-1925. [PMID: 8832414 PMCID: PMC4419146 DOI: 10.1242/jcs.109.7.1919] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe pyp1+ gene, encoding a protein tyrosine phosphatase (pyp1), was isolated as a high copy number suppressor of a mutation that results in reduced cAMP-dependent protein kinase (PKA) activity. Overexpression of pyp1+ inhibits both transcription of the fbp1 gene, which is negatively regulated by a glucose-induced activation of PKA, and sexual development, which is negatively regulated by PKA through a nitrogen- and glucose-monitoring mechanism. Overexpression of a catalytically inactive form of pyp1 has little effect on either process. Previous studies suggest that overexpression of pyp1+ results in a mitotic delay by positively regulating wee1 activity. We show that pyp1 repression of fbp1 transcription is independent of wee1. The direct role of the pyp1 protein is to dephosphorylate and inactivate the sty1/spc1 mitogen-activated protein kinase (MAPK) that is activated by the wis1 MAPK kinase. As overexpression of pyp1+ has no further effect upon the mitotic delay observed in a wis1 deletion strain, the role of pyp1 appears to be restricted to negative regulation of the sty1/spc1 MAPK. This study indicates that pyp1 negatively regulates fbp1 transcription, sexual development and mitosis by inactivation of the sty1/spc1 MAPK, but that bifurcations downstream of the MAPK separate these processes as seen by the differential role for the wee1 gene.
Collapse
|
19
|
Cottarel G. The Saccharomyces cerevisiae HIS3 and LYS2 genes complement the Schizosaccharomyces pombe his5-303 and lys1-131 mutations, respectively: new selectable markers and new multi-purpose multicopy shuttle vectors, pSP3 and pSP4. Curr Genet 1995; 28:380-3. [PMID: 8590485 DOI: 10.1007/bf00326437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three new S. pombe plasmids are described. Plasmids pSP3 and pSP4 are two Schizosaccharomyces pombe ars1 multicopy vectors with the Saccharomyces cerevisiae HIS3 or LYS2 genes as selectable markers. They complement the S. pombe his5-303 or lys1-131 mutations, respectively. Plasmid pSPars1 is a vector carrying the S. pombe ars1 and a unique NdeI site which allows the introduction of any selectable marker therefore bringing a unified vector backbone for the construction of new S. pombe/S. cerevisiae/E. coli shuttle vectors. These plasmids permit classical molecular genetic techniques to be performed directly.
Collapse
Affiliation(s)
- G Cottarel
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, NY 11724, USA
| |
Collapse
|
20
|
Lollier M, Jaquet L, Nedeva T, Lacroute F, Potier S, Souciet JL. As in Saccharomyces cerevisiae, aspartate transcarbamoylase is assembled on a multifunctional protein including a dihydroorotase-like cryptic domain in Schizosaccharomyces pombe. Curr Genet 1995; 28:138-49. [PMID: 8590465 DOI: 10.1007/bf00315780] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The organisation of the URA1 gene of Schizosaccharomyces pombe was determined from the entire cDNA cloned by the transformation of an ATCase-deficient strain of Saccharomyces cerevisiae. The URA1 gene encodes the bifunctional protein GLNase/CPSase-ATCase which catalyses the first two steps of the pyrimidine biosynthesis pathway. The complete nucleotide sequence of the URA1 cDNA was elucidated and the deduced amino-acid sequence was used to define four domains in the protein; three functional domains, corresponding to GLNase (glutamine amidotransferase), CPSase (carbamoylphosphate synthetase) and ATCase (aspartate transcarbamoylase) activities, and one cryptic DHOase (dihydroorotase) domain. Genetic investigations confirmed that both GLNase/CPSase and ATCase activities are carried out by the same polypeptide. They are also both feedback-inhibited by UTP (uridine triphosphate). Its organization and regulation indicate that the S. pombe URA1 gene product appears very similar to the S. cerevisiae URA2 gene product.
Collapse
Affiliation(s)
- M Lollier
- Laboratoire de Microbiologie et de Génétique, URA n-1481 Université Louis-Pasteur/CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
21
|
Perysinakis A, Kinghorn JR, Drainas C. Glutamine synthetase/glutamate synthase ammonium-assimilating pathway in Schizosaccharomyces pombe. Curr Microbiol 1995; 30:367-72. [PMID: 7773104 DOI: 10.1007/bf00369864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Kinetic parameters of glutamine synthetase (GS) and glutamate synthase (glutamine-oxoglutarate aminotransferase) (GOGAT) activities, including initial velocity, pH, and temperature optima, as well as Km values, were estimated in Schizosaccharomyces pombe crude cell-free extracts. Five glutamine auxotrophic mutants of S. pombe were isolated following MNNG treatment. These were designated gln1-1,2,3,4,5, and their growth could be repaired only by glutamine. Mutants gln1-1,2,3,4,5 were found to lack GS activity, but retained wild-type levels of NADP-glutamate dehydrogenase (GDH), NAD-GDH, and GOGAT. One further glutamine auxotrophic mutant, gln1-6, was isolated and found to lack both GS and GOGAT but retained wild-type levels of NADP-GDH and NAD-GDH activities. Fortuitously, this isolate was found to harbor an unlinked second mutation (designated gog1-1), which resulted in complete loss of GOGAT activity but retained wild-type GS activity. The growth phenotype of mutant gog1-1 (in the absence of the gln1-6 mutation) was found to be indistinguishable from the wild type on various nitrogen sources, including ammonium as a sole nitrogen source. Double-mutant strains containing gog1-1 and gdh1-1 or gdh2-1 (mutations that result specifically in the abolition of NADP-GDH activity) result in a complete lack of growth on ammonium as sole nitrogen source in contrast to gdh or gog mutants alone.
Collapse
Affiliation(s)
- A Perysinakis
- Department of Chemistry, University of Ioannina, Greece
| | | | | |
Collapse
|
22
|
Waddell S, Jenkins JR. arg3+, a new selection marker system for Schizosaccharomyces pombe: application of ura4+ as a removable integration marker. Nucleic Acids Res 1995; 23:1836-7. [PMID: 7784193 PMCID: PMC306946 DOI: 10.1093/nar/23.10.1836] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- S Waddell
- Cell Proliferation Laboratory, Marie Curie Research Institute, Oxted, Surrey, UK
| | | |
Collapse
|
23
|
Zhao Y, Lieberman HB. Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol 1995; 14:359-71. [PMID: 7748486 DOI: 10.1089/dna.1995.14.359] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several features of the fission yeast Schizosaccharomyces pombe make it exceptionally well suited for the study of eukaryotic genes. It is a relatively simple eukaryote that can be readily grown and manipulated in the laboratory, using a variety of highly developed and sophisticated methodologies. Schizosaccharomyces pombe cells share many molecular, genetic, and biochemical features with cells from multicellular organisms, making it a particularly useful model to study the structure, function, and regulation of genes from more complex species. For examples, this yeast divides by binary fission, has many genes that contain introns, is capable of using mammalian gene promoters and polyadenylation signals, and has been used to clone mammalian genes by functional complementation of mutants. We present a summary of the biology of S. pombe, useful features that make it amenable to laboratory studies, and molecular techniques available to manipulate the genome of this organism as well as other eukaryotic genes within the fission yeast cellular environment.
Collapse
Affiliation(s)
- Y Zhao
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Lin Y, Smith GR. Molecular cloning of the meiosis-induced rec10 gene of Schizosaccharomyces pombe. Curr Genet 1995; 27:440-6. [PMID: 7586030 DOI: 10.1007/bf00311213] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The meiotic recombination gene rec10, which encodes a region-specific activator of recombination in Schizosaccharomyces pombe, has been cloned by genetic complementation and its nucleotide sequence determined. The rec10 gene was identified in a 5.6-kb cloned fragment by partial-deletion and insertion experiments. The nucleotide sequence of 3.5 kb of this clone revealed an open reading frame (ORF) encoding a 791 amino-acid polypeptide for the rec10 gene product. During meiosis, thermally induced in a temperature-sensitive pat1-114 mutant, the transcript of rec10 was induced to a maximal level at 2-3 h but was present at much lower levels before and after this time. The transient induction of the rec10 transcript and the rec10 mutant phenotype suggest that the rec10 gene product is involved primarily in the early steps of meiotic recombination localized to chromosome III in S. pombe.
Collapse
Affiliation(s)
- Y Lin
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
25
|
Villa L, Suárez-Rendueles P. Dipeptidyl aminopeptidase yspI mutants of Schizosaccharomyces pombe: genetic mapping of dpa1+ on chromosome III. FEMS Microbiol Lett 1994; 120:211-6. [PMID: 8056292 DOI: 10.1111/j.1574-6968.1994.tb07033.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A mutant strain of Schizosaccharomyces pombe lacking dipeptidyl aminopeptidase yspI was isolated from a strain already defective in aminopeptidase activity by means of a staining technique with the chromogenic substrate ala-pro-4-methoxy-beta-naph-thylamide to screen colonies for the absence of the enzyme. The defect segregated 2+:2- in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Gene dosage experiments indicated that the mutation resides in the structural gene of dipeptidyl aminopeptidase yspI, dpa1+. The dpa1+ gene was located on chromosome III by using m-fluorophenylalanine-induced haploidization and mitotic analysis. dpa1 mutants did not show any obvious phenotype under a variety of conditions tested.
Collapse
Affiliation(s)
- L Villa
- Departamento de Biología Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
26
|
Grothues D, Cantor CR, Smith CL. Top-down construction of an ordered Schizosaccharomyces pombe cosmid library. Proc Natl Acad Sci U S A 1994; 91:4461-5. [PMID: 8183932 PMCID: PMC43805 DOI: 10.1073/pnas.91.10.4461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A very rapid and efficient method for sorting and ordering large numbers of clones is presented. This top-down mapping approach divides the entire ordering problem into many smaller tasks and analyzes in parallel a gridded membrane array of clones by hybridization with probe pools. The strategy was tested on a 15-fold-coverage Schizosaccharomyces pombe cosmid library. About 1600 clones were assigned to chromosomes and to regions defined by the Not I and Sfi I restriction maps. Then, the clones were ordered into 20 contigs, which is consistent with statistical expectations for the degree of genome coverage used. The parallel ordering of clones and the computer-based analysis of digitized images make this approach very efficient; it is about 8-fold faster than existing methods. Only 61 hybridizations were needed to order 1600 clones.
Collapse
Affiliation(s)
- D Grothues
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
27
|
Schäfer B, Wilde B, Massardo DR, Manna F, Del Giudice L, Wolf K. A mitochondrial group-I intron in fission yeast encodes a maturase and is mobile in crosses. Curr Genet 1994; 25:336-41. [PMID: 8082176 DOI: 10.1007/bf00351487] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The open reading frame in the first intron of the mitochondrial gene encoding subunit I of cytochrome c oxidase encodes a maturase and stimulates homologous recombination in Escherichia coli. In this paper, we demonstrate that this intron is mobile in crosses, indicating that it also encodes an endonuclease. This is the first report on an intron which possesses mobility and acts as a maturase.
Collapse
Affiliation(s)
- B Schäfer
- Institut für Biologie IV (Mikrobiologie), Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Czerucka D, Roux I, Rampal P. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3',5'-cyclic monophosphate induction in intestinal cells. Gastroenterology 1994; 106:65-72. [PMID: 8276210 DOI: 10.1016/s0016-5085(94)94403-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS The yeast Saccharomyces boulardii inhibits the secretion induced by cholera toxin (CT) in rat jejunum. The present study was aimed at unraveling the mechanism by which S. boulardii protects intestinal cells against CT. METHODS CT-induced adenosine 3',5'-cyclic monophosphate (cAMP) levels were measured by radioimmunoassay in intestinal epithelial cells IEC-6 or HT29-D4 cells exposed to whole yeast or to culture medium conditioned by S. boulardii (Sb-conditioned medium). RESULTS Sb-conditioned medium significantly reduced CT-induced cAMP levels in IEC-6 cells. This effect was eliminated by heat treatment, trypsin hydrolysis, and trichloroacetic acid precipitation of Sb-conditioned medium. When conditioned medium was fractionated on polyacrylamide gel under nondenaturing conditions, neutralizing activity was shown to be associated with a 120-kilodalton protein. The neutralizing activity was not attributable to proteolytic activity against CT. Sb-conditioned medium reduced the amount of cAMP induced by CT as well as Escherichia coli thermolabile toxin or forskolin in HT29-D4 cells. The modulation of secretagogue-induced cAMP by Sb-conditioned medium did not occur in the presence of pertussis toxin. CONCLUSIONS These results suggest that the neutralization of CT by S. boulardii is mediated by a specific yeast protein and involves a receptor that is negatively coupled to adenylate cyclase.
Collapse
Affiliation(s)
- D Czerucka
- Laboratoire de Gastroentérologie, Faculté de Médecine, Nice, France
| | | | | |
Collapse
|
29
|
Apolinario E, Nocero M, Jin M, Hoffman CS. Cloning and manipulation of the Schizosaccharomyces pombe his7+ gene as a new selectable marker for molecular genetic studies. Curr Genet 1993; 24:491-5. [PMID: 8299169 PMCID: PMC4417482 DOI: 10.1007/bf00351711] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have cloned the his7+ gene of the fission yeast Schizosaccharomyces pombe by complementation of the recessive mutant allele his7-366. The his7+ gene is able to complement a mutation of the Escherichia coli hisI gene, suggesting that his7+ encodes a phosphoribosyl-AMP cyclohydrase. Subcloning experiments localize the gene to a 1.9-kb XbaI-BglII fragment. We describe the construction of plasmids to facilitate the use of his7+ as a selectable marker in S. pombe studies. Plasmid pEA2 carries his7+ cloned into the pUC18 polylinker. From either pEA2 or the original his7+ clone, pMN1, fragments carrying his7+ can be isolated using a variety of restriction enzymes for the construction of gene disruptions. Plasmid pEA500 is a cloning vector that carries his7+ and ars1, yet retains the ability to use the blue/white color screen to identify recombinants.
Collapse
Affiliation(s)
- E Apolinario
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | | | | | |
Collapse
|
30
|
Barel I, MacDonald DW. Enzyme defects in glutamate-requiring strains of Schizosaccharomyces pombe. FEMS Microbiol Lett 1993; 113:267-72. [PMID: 7903653 DOI: 10.1111/j.1574-6968.1993.tb06525.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Among the glutamate-requiring strains of Schizosaccharomyces pombe previously described [1], glu2 and glu3 strains were both shown to lack NAD-specific isocitrate dehydrogenase. glu4 strains were shown to lack glutamine:2-oxoglutarate aminotransferase (GOGAT), and to be defective in ammonia assimilation. The regulation of GOGAT activity in wild-type cells was investigated and was consistent with GOGAT and glutamine synthetase being involved in ammonium assimilation, particularly under conditions of nitrogen limitation.
Collapse
Affiliation(s)
- I Barel
- Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
31
|
Ford RA, Ye ZH, Bhattacharjee JK. Physical and functional characterization of the cloned lys1+ gene of Schizosaccharomyces pombe. J Basic Microbiol 1993; 33:179-86. [PMID: 8350245 DOI: 10.1002/jobm.3620330308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The alpha-aminoadipate pathway for the biosynthesis of lysine is present in yeast and other higher fungi. The lys2 and lys5 mutants of Saccharomyces cerevisiae as well as the lys1- and lys7-mutants of Schizosacharomyces pombe are blocked at the alpha-aminoadipate reductase step of this pathway. The cloned lys1+ gene in the plasmid pLYS1 isolated from a S. pombe genomic library complemented lys1-mutant of S. pombe. The cloned LYS2 gene in the plasmid YEp620 and the LYS5 gene in the plasmid pSC5 of S. cerevisiae exhibited heterologous complementation of lys1- and lys7-mutants, respectively, of S. pombe. The homologous lys1+ transformed cells exhibited five fold higher alpha-aminoadipate reductase activity while the heterologous lys1+ and lys7+ transformed cells exhibited much less activity than the wild type cells. The DNA insert of the plasmid pLYS1 was determined to be 16.7 kb long and the lys1+ gene has been subcloned within a 9.1 kb Clal-Clal DNA insert of the recombinant plasmids pLYS1B and pLYS1C. The restriction pattern for 12 enzymes of the 9.1 kb DNA insert, (Apal, Aval, BamHI, Clal, EcoRI, EcoRV, HindIII, Hpal, Pstl, Pvull, Sphl, and Xbal), exhibited no obvious similarity to that of the LYS2 gene of S. cerevisiae. A 1.7 kb EcoRI-HindIII DNA fragment of pLYS1B and pLYS1C complemented the lys1-131 mutation in an integrative transformation. Although the lys1+ gene of S. pombe is isofunctional to the LYS2 gene of S. cerevisiae, the restriction sites, and expression of these two genes exhibited considerable divergence.
Collapse
Affiliation(s)
- R A Ford
- Department of Microbiology, Miami University, Oxford, OH 45056
| | | | | |
Collapse
|
32
|
MacNeill SA, Nurse P. Mutational analysis of the fission yeast p34cdc2 protein kinase gene. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:415-26. [PMID: 8437586 DOI: 10.1007/bf00277142] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The p34cdc2 protein serine-threonine kinase plays an essential role in the life cycle of fission yeast, being required for both the G1-S and G2-M transitions during mitotic growth, and also for the second meiotic nuclear division. Functional homologues of p34cdc2 (each ca. 60% identical to the fission yeast prototype) have been isolated from organisms as diverse as humans, insects and plants, and there is now considerable evidence supporting the view that fundamental aspects of the cell cycle controls uncovered in fission yeast will prove to be conserved in all eukaryotes. By comparing the amino acid sequences of fission yeast p34cdc2 with its higher eukaryotic counterparts it is possible to identify conserved residues that are likely to be centrally important for p34cdc2 function. Here the effects are described of mutating a number of these conserved residues. Twenty-three new mutant alleles have been constructed and tested. We show that replacing cysteine 67 with tryptophan renders the resulting mutant protein p80cdc25-independent (while neither leucine, isoleucine nor valine has this effect) and that several of the amino acids within the highly conserved PSTAIRE region are not absolutely required for p34cdc2 function. Five acidic amino acids have also been mutated within p34cdc2, which are invariant across the eukaryotic protein kinase family. Acid-to-base mutations at three of these residues resulted in a dominant-negative, cell cycle arrest phenotype while similar mutations at the other two simply abolished p34cdc2 protein function. The results are discussed with reference to the predicted tertiary structure of the p34cdc2 enzyme.
Collapse
|
33
|
Fan JB, Rochet M, Gaillardin C, Smith CL. Detection and characterization of a ring chromosome in the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 1992; 20:5943-5. [PMID: 1461727 PMCID: PMC334458 DOI: 10.1093/nar/20.22.5943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NotI and SfiI genomic restriction maps were used to detect and characterize a ring chromosome II in a Schizosaccharomyces pombe strain with a meiotic defect on chromosome II. The ring chromosome was formed by an intrachromosomal fusion near, or at, the very ends of chromosome II.
Collapse
Affiliation(s)
- J B Fan
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | | | | | | |
Collapse
|
34
|
Maier E, Hoheisel JD, McCarthy L, Mott R, Grigoriev AV, Monaco AP, Larin Z, Lehrach H. Complete coverage of the Schizosaccharomyces pombe genome in yeast artificial chromosomes. Nat Genet 1992; 1:273-7. [PMID: 1302023 DOI: 10.1038/ng0792-273] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genome of the fission yeast, Schizosaccharomyces pombe, consists of some 14 million base pairs of DNA contained in three chromosomes. On account of its excellent genetics we used it as a test system for a strategy designed to map mammalian chromosomes and genomes. Data obtained from hybridization fingerprinting established an ordered library of 1,248 yeast artificial chromosome clones with an average size of 535 kilobases. The clones fall into three contigs completely representing the three chromosomes of the organism. This work provides a high resolution physical and clone map of the genome, which has been related to available genetic and physical map information.
Collapse
Affiliation(s)
- E Maier
- Genome Analysis Laboratory, Imperial Cancer Research Fund, Lincolns Inn Fields, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ayscough K, Hayles J, MacNeill SA, Nurse P. Cold-sensitive mutants of p34cdc2 that suppress a mitotic catastrophe phenotype in fission yeast. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:344-50. [PMID: 1316996 DOI: 10.1007/bf00266236] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene products that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.
Collapse
Affiliation(s)
- K Ayscough
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
36
|
Ponticelli AS, Smith GR. Chromosomal context dependence of a eukaryotic recombinational hot spot. Proc Natl Acad Sci U S A 1992; 89:227-31. [PMID: 1729693 PMCID: PMC48209 DOI: 10.1073/pnas.89.1.227] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The single base-pair mutation M26 in the ade6 gene of the fission yeast Schizosaccharomyces pombe creates a hot spot for meiotic homologous recombination. When DNA fragments containing M26 and up to 3.0 kilobases of surrounding DNA were moved to the ura4 gene or to a multicopy plasmid, M26 had no detectable hot spot activity. Our results indicate that nucleotide sequences at least 1 kilobase away from M26 are required for M26 hot spot activity and suggest that, as for transcriptional promoters, a second site or proper chromatin structure is required for activation of this eukaryotic recombinational hot spot. We discuss the implications of these results for studies of other meiotic recombinational hot spots and for gene targeting.
Collapse
Affiliation(s)
- A S Ponticelli
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
37
|
Abstract
As an aid to the fission yeast genome project, we describe a database for Schizosaccharomyces pombe consisting of both genetic and physical information. As presented, it is therefore both an updated gene list of all the nuclear genes of the fission yeast, and provides an estimate of the physical distance between two mapped genes. Additionally, a field indicates whether the sequence of the gene is available. Currently, sequence information is available for 135 of the 501 known genes.
Collapse
Affiliation(s)
- G G Lennon
- Biomed. Div. L-452, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | |
Collapse
|
38
|
Fan JB, Grothues D, Smith CL. Alignment of Sfi I sites with the Not I restriction map of Schizosaccharomyces pombe genome. Nucleic Acids Res 1991; 19:6289-94. [PMID: 1956788 PMCID: PMC329141 DOI: 10.1093/nar/19.22.6289] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A Sfi I restriction map of the fission yeast Schizosaccharomyces pombe genome was aligned with the Not I restriction map. There are 16 Sfi I sites in the S. pombe genome. Three Sfi I sites are on chromosome III which is devoid of Not I sites. The sizes of the entire genome and individual chromosomes, calculated from the Sfi I fragment sizes, are consistent with that calculated from the Not I fragment sizes. The Sfi I map provides greater physical characterization of the S. pombe genome and further validates the use of S. pombe chromosomal DNA as size standard. These maps have allowed detection of polymorphism on all three chromosomes.
Collapse
Affiliation(s)
- J B Fan
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
39
|
MacNeill SA, Creanor J, Nurse P. Isolation, characterisation and molecular cloning of new mutant alleles of the fission yeast p34cdc2+ protein kinase gene: identification of temperature-sensitive G2-arresting alleles. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:109-18. [PMID: 1896017 DOI: 10.1007/bf00264219] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein serine-threonine kinase p34cdc2+ plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. p34cdc2+ function is required both for the initiation of DNA replication and for entry into mitosis, and is also required for the initiation of the second meiotic nuclear division. Recent extensive analysis of p34cdc2+ homologue proteins in higher eukaryotes has demonstrated that p34cdc2+ function is likely to be conserved in all eukaryotic cells. Here we report the isolation and characterisation of five new temperature-sensitive alleles of the cdc2+ gene. All five have been cloned and sequenced, together with the meiotically defective cdc2-N22 allele, bringing the total of p34cdc2+ mutants cloned in this and previous reports to seventeen. The five temperature-sensitive alleles define four separate mutations within the p34cdc2+ protein sequence, two of which give rise to cell cycle arrest in G2 only, when shifted to the restrictive temperature. The nature of the mutation in each protein is described and possible implications for the structure and function of p34cdc2+ discussed.
Collapse
Affiliation(s)
- S A MacNeill
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
40
|
Ghislain M, Goffeau A. The pma1 and pma2 H(+)-ATPases from Schizosaccharomyces pombe are functionally interchangeable. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55265-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Hoffman CS, Winston F. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev 1991; 5:561-71. [PMID: 1849107 DOI: 10.1101/gad.5.4.561] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcription of the fbp1 gene, encoding fructose-1,6-bisphosphatase, of Schizosaccharomyces pombe is subject to glucose repression. Previous work has demonstrated that several genes (git genes) are required for this repression. In this report we demonstrate that one of these genes, git2, is the same as the cyr1 gene, which encodes adenylate cyclase, and that loss-of-function mutations in git2 cause constitutive fbp1 transcription. Addition of cAMP to the growth medium suppresses the transcriptional defect in git2 mutants as well as in strains that carry mutations in any of six additional git genes. Similarly, exogenous cAMP represses fbp1 transcription in wild-type cells grown on a derepressing carbon source. Different levels of adenylate cyclase activity in different git2 mutants, coupled with the result that some git2 mutants display intragenic complementation, strongly suggest that adenylate cyclase acts as a multimer and that different git2 mutations alter distinct activities of adenylate cyclase, including catalytic activity and response to glucose. Additional experiments demonstrate that this cAMP signaling pathway is independent of the S. pombe ras1 gene and works by activation of cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- C S Hoffman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
42
|
Abstract
We report here that the fission yeast centromere regions in the three chromosomes contain no less than 36 symmetrically arranged tRNA-coding sequences, and many of them are located within the inner inverted regions that are thought to be essential for the centromere function. There are 11 different species of tRNA-coding sequences, and four of them are identical to those previously known in this organism. This high-density distribution of tRNA genes in the centromere regions is surprising, as the fission yeast centromeres were thought to form transcriptionally inactive structures.
Collapse
|
43
|
The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol Cell Biol 1991. [PMID: 1899284 DOI: 10.1128/mcb.11.2.611] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.
Collapse
|
44
|
Weilguny D, Praetorius M, Carr A, Egel R, Nielsen O. New vectors in fission yeast: application for cloning the his2 gene. Gene X 1991; 99:47-54. [PMID: 1850709 DOI: 10.1016/0378-1119(91)90032-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe a new Escherichia coli vector (pON5) that allows positive selection for recombinant clones. In this plasmid, the bla gene from pBR322 is permanently active, whereas the neo gene from transposon Tn5 is repressed by the cI-encoded lambda repressor. When DNA is inserted into the Bc/I or HindIII restriction sites situated within the cI gene, the neo gene becomes transcribed from the lambda pR promoter. We have also made a Schizosaccharomyces pombe derivative of pON5 (= pON163) by introducing the fission yeast ars1 and ura4+ sequences. We show that this plasmid is capable of transforming Sc. pombe ura4 strains, as well as ura 3 strains of the distantly related budding yeast Saccharomyces cerevisiae. We have used pON163 for the construction of two fission yeast genomic libraries. From these gene banks clones were isolated that were able to complement fission yeast his2 mutants. Such plasmids could also rescue his4C mutants of Sa. cerevisiae, defective in the histidinol dehydrogenase activity of the multifunctional HIS4 gene product. Finally, we describe the plasmid pDW232 which is useful for functional analysis of fission yeast genes. It is a pGEM3 derivative adapted to fission yeast, carrying multiple cloning sites between the T7 and SP6 promoters, together with ars1 and ura4+ from Sc. pombe.
Collapse
Affiliation(s)
- D Weilguny
- Institute of Genetics, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
45
|
Abstract
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.
Collapse
Affiliation(s)
- T Enoch
- Department of Biochemistry, Oxford University, United Kingdom
| | | | | | | |
Collapse
|
46
|
Olesen JT, Fikes JD, Guarente L. The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol Cell Biol 1991; 11:611-9. [PMID: 1899284 PMCID: PMC359712 DOI: 10.1128/mcb.11.2.611-619.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.
Collapse
Affiliation(s)
- J T Olesen
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
47
|
Zimmer M, Krabusch M, Wolf K. Characterization of a novel open reading frame, urf a, in the mitochondrial genome of fission yeast: correlation of urf a mutations with a mitochondrial mutator phenotype and a possible role of frameshifting in urf a expression. Curr Genet 1991; 19:95-102. [PMID: 2065367 DOI: 10.1007/bf00326289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Between the genes for tRNA(gin) and tRNA(ile) an open reading frame of 227 amino acids has been identified which is unique among known mitochondrial genomes and which has been termed urf a (Lang et al. 1983; Kornrumpf et al. 1984). It uses the "mitochondrial" genetic code, i.e., it contains a TGA codon, whereas all other protein-encoding genes, and all but one intronic open reading frame, use the "standard" genetic code (UGG for tryptophan). A previous paper has demonstrated that "mutator" strains show an increased formation of mitochondrial drug-resistant and respiration-deficient mutants (including deletions). In this paper we show that the mutator activity is correlated with mutations in urf a. A detailed analysis of one urf a mutant is presented (anar-6), where the deletion of an A residue leads to a frameshift mutation and consequently to premature termination of the putative protein. The phenotype of colonies originating from a single mutant clone varies from no growth up to full growth on non-fermentable substrate. This phenomenon of phenotypic segregation can be explained by the ability of the cell to perform translational frameshifting. A detailed analysis of the DNA sequence and the putative urf a protein will be presented and a possible function of the protein will be discussed.
Collapse
Affiliation(s)
- M Zimmer
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität, Mainz, Federal Republic of Germany
| | | | | |
Collapse
|
48
|
Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 1991; 194:795-823. [PMID: 2005825 DOI: 10.1016/0076-6879(91)94059-l] [Citation(s) in RCA: 3069] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Granot D, Snyder M. Segregation of the nucleolus during mitosis in budding and fission yeast. CELL MOTILITY AND THE CYTOSKELETON 1991; 20:47-54. [PMID: 1661641 DOI: 10.1002/cm.970200106] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The segregation of the nucleolus during mitosis was examined in Saccharomyces cerevisiae and Schizosaccharomyces pombe by indirect immunofluorescence using antibodies directed to highly conserved anti-nucleolus antigens. In mitotic S. pombe cells, the nucleolus appears to trail the bulk of the DNA. In wild-type cells of S. cerevisiae, the nucleolus segregates alongside the bulk of the genomic DNA. Based on its distance from the centromere, we would expect the rDNA in both organisms to segregate behind the majority of the genomic DNA, if telomeric regions trail centromeric regions as in other eukaryotes. We therefore suggest that in S. cerevisiae the nucleolus is attached to other parts of the nucleus which enable it to segregate along with the bulk of the DNA. The segregation of the nucleolus in topoisomerase mutants and nuclear division mutants of S. cerevisiae was also investigated. In cdc14 mutants which arrest at late anaphase, the vast majority of the DNA is separated, but the nucleolar antigens remain extended between the mother and daughter cells. Thus, the CDC14 gene of S. cerevisiae appears to be important for the separation of the nucleolus at mitosis.
Collapse
Affiliation(s)
- D Granot
- Department of Biology, Yale University, New Haven, CT 06511
| | | |
Collapse
|
50
|
Okazaki K, Okazaki N, Kume K, Jinno S, Tanaka K, Okayama H. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res 1990; 18:6485-9. [PMID: 2251111 PMCID: PMC332599 DOI: 10.1093/nar/18.22.6485] [Citation(s) in RCA: 371] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe a highly efficient alkali cation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of fission yeast Schizosaccharomyces pombe mutants. cDNA libraries constructed with the pcD or pcD2 vector are transduced into yeast by cotransfection with a linearized vector, which allows an enhanced homologous recombination between the yeast vector and the library plasmid leading to the efficient formation of concatemers containing pcD molecules. The transformation frequencies obtained by the method are 10(6) colonies per 10(8) cells transfected with 2 micrograms of library and 1 microgram of vector, 50-60% of which contain pcD molecules. The high-efficiency alkali cation method circumvents many of the shortcomings of the spheroplast method generally used for Schiz. pombe transfection. The vectors are maximized for the efficiency of library transduction and minimized for the rearrangements of pcD molecules during propagation in yeast. This system allows rapid screening of multi-million cDNA clone libraries for rare cDNAs in a routine scale of experiments. Using this system, various mammalian cDNAs that are extremely difficult, time-consuming, or unclonable to clone by other methods have been cloned.
Collapse
Affiliation(s)
- K Okazaki
- Department of Molecular Genetics, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|