1
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
2
|
Sampley ML, Ozcan S. Regulation of insulin gene transcription by multiple histone acetyltransferases. DNA Cell Biol 2011; 31:8-14. [PMID: 21774670 DOI: 10.1089/dna.2011.1336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated the role of the additional HAT proteins CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and general control of amino-acid synthesis 5 (GCN5) in regulation of glucose-stimulated insulin gene transcription. Utilizing quantitative chromatin immunoprecipitation analysis, we demonstrate that glucose regulates the binding of p300, CBP, PCAF, and GCN5 to the proximal insulin promoter. siRNA-mediated knockdown of each of these HAT proteins revealed that depletion of p300 and CBP leads to a drastic decrease in histone H4 acetylation at the insulin promoter and in insulin gene expression, whereas knockdown of PCAF and GCN5 leads to a more moderate decrease in histone H4 acetylation and insulin gene expression. These data suggest that high glucose mediates the recruitment of p300, CBP, PCAF, and GCN5 to the insulin promoter and that all four HATs are important for insulin gene expression.
Collapse
Affiliation(s)
- Megan L Sampley
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | | |
Collapse
|
3
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
4
|
Roderigo-Milne H, Hauge-Evans AC, Persaud SJ, Jones PM. Differential expression of insulin genes 1 and 2 in MIN6 cells and pseudoislets. Biochem Biophys Res Commun 2002; 296:589-95. [PMID: 12176022 DOI: 10.1016/s0006-291x(02)00913-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is some evidence that the two rodent insulin genes are differentially regulated in mice, although there is no satisfactory consensus on the relative levels and patterns of expression for the two genes. Using the mouse insulinoma cell line MIN6, we have demonstrated by quantitative RT-PCR, differential patterns of expression for the two genes. In mouse islets and early passage MIN6 cells, expression of ins 1 and ins 2 were found to be approximately equal, but levels of ins 1 mRNA diminished rapidly with continued passage. Furthermore, the ins 1 gene was found to be up-regulated in response to glucose stimulation and as a result of increased cell-cell contact, but no effect on the ins 2 gene was observed. Since the MIN6 cell line is frequently used as a beta-cell model for gene expression studies, consideration should be given to both insulin genes.
Collapse
Affiliation(s)
- Helen Roderigo-Milne
- Centre for Endocrinology and Reproduction Research, GKT School of Biomedical Sciences, King's College London, Guy's Campus, London Bridge, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
5
|
|
6
|
Ling Z, Heimberg H, Foriers A, Schuit F, Pipeleers D. Differential expression of rat insulin I and II messenger ribonucleic acid after prolonged exposure of islet beta-cells to elevated glucose levels. Endocrinology 1998; 139:491-5. [PMID: 9449616 DOI: 10.1210/endo.139.2.5749] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prolonged exposure of rat islet beta-cells to 10 mmol/liter glucose has been previously shown to activate more cells into a glucose-responsive state (>90%) than has exposure to 6 mmol/liter glucose (50%). The present study demonstrates that this recruitment of more activated cells results in 4- to 6-fold higher levels of proinsulin I and proinsulin II messenger RNA (mRNA). However, only the rate of proinsulin I synthesis is increased. Failure to increase the rate of proinsulin II synthesis in the glucose-activated cells results in cellular depletion of the insulin II isoform, which can be responsible for degranulation of beta-cells cultured at 10 mmol/liter glucose. Higher glucose levels (20 mmol/liter) during culture did not correct this dissociation between the stimulated insulin I formation and the nonstimulated insulin II formation. On the contrary, the rise from 10 to 20 mmol/liter glucose resulted in a 2-fold reduction in the levels of proinsulin II mRNA, but not of proinsulin I mRNA; this process further increased the ratio of insulin I over insulin II to 5-fold higher values than those in freshly isolated beta-cells. The present data suggest that an elevated insulin I over insulin II ratio in pancreatic tissue is a marker for a prolonged exposure to elevated glucose levels. The increased ratio in this condition results from a transcriptional and/or a posttranscriptional failure in elevating insulin II formation while insulin I production is stimulated in the glucose-activated beta-cells.
Collapse
Affiliation(s)
- Z Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
7
|
Roche E, Assimacopoulos-Jeannet F, Witters LA, Perruchoud B, Yaney G, Corkey B, Asfari M, Prentki M. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic beta-cell line (INS-1). J Biol Chem 1997; 272:3091-8. [PMID: 9006960 DOI: 10.1074/jbc.272.5.3091] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chronic elevation in glucose has pleiotropic effects on the pancreatic beta-cell including a high rate of insulin secretion at low glucose, beta-cell hypertrophy, and hyperplasia. These actions of glucose are expected to be associated with the modulation of the expression of a number of glucose-regulated genes that need to be identified. To further investigate the molecular mechanisms implicated in these adaptation processes to hyperglycemia, we have studied the regulation of genes encoding key glycolytic enzymes in the glucose-responsive beta-cell line INS-1. Glucose (from 5 to 25 mM) induced phosphofructokinase-1 (PFK-1) isoform C, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (4-fold), and L-pyruvate kinase (L-PK) (7-fold) mRNAs. In contrast the expression level of the glucokinase (Gk) and 6-phosphofructo-2-kinase transcripts remained unchanged. Following a 3-day exposure to elevated glucose, a similar induction was observed at the protein level for PFK-1 (isoforms C, M, and L), GAPDH, and L-PK, whereas M-PK expression only increased slightly. The study of the mechanism of GAPDH induction indicated that glucose increased the transcriptional rate of the GAPDH gene but that both transcriptional and post transcriptional effects contributed to GAPDH mRNA accumulation. 2-Deoxyglucose did not mimic the inductive effect of glucose, suggesting that increased glucose metabolism is involved in GAPDH gene induction. These changes in glycolytic enzyme expression were associated with a 2-3-fold increase in insulin secretion at low (2-5 mM) glucose. The metabolic activity of the cells was also elevated, as indicated by the reduction of the artificial electron acceptor 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium. A marked deposition of glycogen, which was readily mobilized upon lowering of the ambient glucose, and increased DNA replication were also observed in cells exposed to elevated glucose. The results suggest that a coordinated induction of key glycolytic enzymes as well as massive glycogen deposition are implicated in the adaptation process of the beta-cell to hyperglycemia to allow for chronically elevated glucose metabolism, which, in this particular fuel-sensitive cell, is linked to metabolic coupling factor production and cell activation.
Collapse
Affiliation(s)
- E Roche
- Molecular Nutrition Unit, Department of Nutrition, University of Montreal, H3C 3J7 Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gasa R, Gomis R, Casamitjana R, Novials A. Signals related to glucose metabolism regulate islet amyloid polypeptide (IAPP) gene expression in human pancreatic islets. REGULATORY PEPTIDES 1997; 68:99-104. [PMID: 9110380 DOI: 10.1016/s0167-0115(96)02109-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular pathways involved in glucose stimulation of IAPP gene expression were studied in human pancreatic islets. Glucose (16.7 mM), but not mannose, caused a 2.3-fold increase in IAPP mRNA levels; this effect was inhibited by actinomycin D. In the presence of the non-metabolizable 6-deoxyglucose (16.7 mM) IAPP mRNA levels were markedly depleted. Both mannoheptulose and verapamil blocked glucose-induced stimulation of the IAPP gene. The magnitude of the insulin gene response to glucose was smaller (1.3-fold); none of the above-mentioned agents had significant effects on insulin mRNA content. Tunicamycin elicited a 2.4- and 2.7-fold increase in IAPP mRNA levels in the low and high glucose media, respectively; however, it did not change insulin mRNA. It had no effect on rat IAPP or insulin mRNAs, either. We conclude that IAPP gene expression is regulated by signals derived from glucose metabolism and that intracellular calcium may be involved in this response. IAPP and insulin genes are not co-regulated in cultured human pancreatic islets.
Collapse
Affiliation(s)
- R Gasa
- Department of Endocrinology, Hospital Clínic i Universitari, Barcelona, Spain
| | | | | | | |
Collapse
|
9
|
Marshak S, Totary H, Cerasi E, Melloul D. Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci U S A 1996; 93:15057-62. [PMID: 8986763 PMCID: PMC26355 DOI: 10.1073/pnas.93.26.15057] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in beta cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated beta cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line alpha TC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed beta TC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed beta cells.
Collapse
Affiliation(s)
- S Marshak
- Department of Endocrinology and Metabolism, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
10
|
Redmon JB, Olson LK, Armstrong MB, Greene MJ, Robertson RP. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J Clin Invest 1996; 98:2786-93. [PMID: 8981925 PMCID: PMC507744 DOI: 10.1172/jci119105] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
FK506 (tacrolimus) is an immunosuppressive drug which interrupts Ca2+-calmodulin-calcineurin signaling pathways in T lymphocytes, thereby blocking antigen activation of T cell early activation genes. Regulation of insulin gene expression in the beta cell may also involve Ca2+-signaling pathways and FK506 has been associated with insulin-requiring diabetes mellitus during clinical use. The purpose of this study was to characterize the effects of FK506 on human insulin gene transcription, insulin mRNA levels, and insulin secretion using as a model the HIT-T15 beta cell line. FK506 had no acute effect on insulin secretion in the HIT cell, but caused a reversible time- and dose-dependent (10(-9)-10(-6) M) decrease in HIT cell insulin secretion. Decreased insulin secretion in the presence of FK506 was also accompanied by a dose-dependent decrease in HIT cell insulin content, insulin mRNA levels, and expression of a human insulin promoter-chloramphenicol acetyl transferase (CAT) reporter gene. FK506 decreased HIT cell expression of the human insulin promoter-CAT reporter gene by 40% in the presence of both low (0.4 mM) at high (20 mM) glucose concentrations. Western blot analysis of HIT cell proteins gave evidence for the presence of calcineurin in the HIT cell. These findings suggest that FK506 may have direct effects to reversibly inhibit insulin gene transcription, leading to a decline in insulin mRNA levels, insulin synthesis, and ultimately insulin secretion.
Collapse
Affiliation(s)
- J B Redmon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | |
Collapse
|