1
|
Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Poly F, Rey M, Heddi A, Normand P. Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a. Microbiology (Reading) 2016; 162:1173-1184. [DOI: 10.1099/mic.0.000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Lorena Carro
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| | - Petar Pujic
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| | - Nicole Alloisio
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| | - Pascale Fournier
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| | - Hasna Boubakri
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| | - Franck Poly
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| | - Marjolaine Rey
- Université de Lyon, INSA Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, 69622 Cedex, France
| | - Abdelaziz Heddi
- Université de Lyon, INSA Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, 69622 Cedex, France
| | - Philippe Normand
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex, France
| |
Collapse
|
2
|
Singh SS, Singh A, Srivastava A, Singh P, Singh A, Mishra AK. Characterization of frankial strains isolated from Hippophae salicifolia D. Don, based on physiological, SDS–PAGE of whole cell proteins and RAPD PCR analyses. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0260-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Woods DR, Reid SJ. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev 1993; 11:273-83. [PMID: 7691113 DOI: 10.1111/j.1574-6976.1993.tb00001.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The structure of glutamine synthetase (GS) enzymes from diverse bacterial groups fall into three distinct classes. GSI is the typical bacterial GS, GSII is similar to the eukaryotic GS and is found together with GSI in plant symbionts and Streptomyces, while GSIII has been found in two unrelated anaerobic rumen bacteria. In most cases, the structural gene for GS enzyme is regulated in response to nitrogen. However, different regulatory mechanisms, to ensure optimal utilization of nitrogen substrates, control the GS enzyme in each class.
Collapse
Affiliation(s)
- D R Woods
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
4
|
Hosted TJ, Rochefort DA, Benson DR. Close linkage of genes encoding glutamine synthetases I and II in Frankia alni CpI1. J Bacteriol 1993; 175:3679-84. [PMID: 8099074 PMCID: PMC204773 DOI: 10.1128/jb.175.11.3679-3684.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Frankia alni CpI1 has two glutamine synthetases (GSs), GSI and GSII. The GSI gene (glnA) was isolated from a cosmid library of F. alni CpI1 DNA by heterologous probing with glnA from Streptomyces coelicolor. The glnA gene was shown to be located upstream of the GSII gene (glnII) by DNA-DNA hybridization. The nucleotide sequences of the 1,422-bp CpI1 glnA gene and of the 449-bp intervening region between glnA and glnII were determined, and the glnA amino acid sequence was deduced. In common with GSIs from other organisms, CpI1 GSI contains five conserved regions near the active site and a conserved tyrosine at the adenylylation site. F. alni CpI1 glnA complemented the glutamine growth requirement of the Escherichia coli glnA deletion strain YMC11 but only when expressed from an E. coli lac promoter. While the functional significance of maintaining two GSs adjacent to one another remains unclear, this arrangement in F. alni provides support for the recently proposed origin of GSI and GSII as resulting from a gene duplication early in the evolution of life.
Collapse
Affiliation(s)
- T J Hosted
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | | | |
Collapse
|
6
|
Lundquist PO, Huss-Danell K. Immunological studies of glutamine synthetase inFrankia-Alnus incanasymbioses. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05199.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Molecular cloning, sequencing, and expression of the glutamine synthetase II (glnII) gene from the actinomycete root nodule symbiont Frankia sp. strain CpI1. J Bacteriol 1990; 172:5335-42. [PMID: 1975584 PMCID: PMC213197 DOI: 10.1128/jb.172.9.5335-5342.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In common with other plant symbionts, Frankia spp., the actinomycete N2-fixing symbionts of certain nonleguminous woody plants, synthesize two glutamine synthetases, GSI and GSII. DNA encoding the Bradyrhizobium japonicum gene for GSII (glnII) hybridized to DNA from three Frankia strains. B. japonicum glnII was used as a probe to clone the glnII gene from a size-selected KpnI library of Frankia strain CpI1 DNA. The region corresponding to the Frankia sp. strain CpI1 glnII gene was sequenced, and the amino acid sequence was compared with that of the GS gene from the pea and glnII from B. japonicum. The Frankia glnII gene product has a high degree of similarity with both GSII from B. japonicum and GS from pea, although the sequence was about equally similar to both the bacterial and eucaryotic proteins. The Frankia glnII gene was also capable of complementing an Escherichia coli delta glnA mutant when transcribed from the vector lac promoter, but not when transcribed from the Frankia promoter. GSII produced in E. coli was heat labile, like the enzyme produced in Frankia sp. strain CpI1 but unlike the wild-type E. coli enzyme.
Collapse
|
8
|
Schultz NA, Benson DR. Enzymes of ammonia assimilation in hyphae and vesicles of Frankia sp. strain CpI1. J Bacteriol 1990; 172:1380-4. [PMID: 1968454 PMCID: PMC208609 DOI: 10.1128/jb.172.3.1380-1384.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.
Collapse
Affiliation(s)
- N A Schultz
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | |
Collapse
|