1
|
Shrivastava A, Pal M, Sharma RK. Pichia as Yeast Cell Factory for Production of Industrially Important Bio-Products: Current Trends, Challenges, and Future Prospects. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
2
|
Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility, and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7030171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About 42 commercial products based on non-Saccharomyces yeasts are estimated as available on the market, being mostly pure cultures (79%), with a predominance of Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima. The others are multi-starter consortia that include non-Saccharomyces/Saccharomyces mixtures or only non-Saccharomyces species. Several commercial yeasts have shown adequate biocompatibility with S. cerevisiae in mixed fermentations, allowing an increased contribution of metabolites of oenological interest, such as glycerol, esters, higher alcohols, acids, thiols, and terpenes, among others, in addition to a lower production of acetic acid, volatile phenols, biogenic amines, or urea. Multi-starter inoculations are also reviewed here, which show adequate biocompatibility and synergy between species. In certain cases, the aromatic profile of wines based on grape varieties considered neutral is improved. In addition, several yeasts show the capacity as biocontrollers against contaminating microorganisms. The studies conducted to date demonstrate the potential of these yeasts to improve the properties of wine as an alternative and complement to the traditional S. cerevisiae.
Collapse
|
3
|
Vicente J, Calderón F, Santos A, Marquina D, Benito S. High Potential of Pichia kluyveri and Other Pichia Species in Wine Technology. Int J Mol Sci 2021; 22:ijms22031196. [PMID: 33530422 PMCID: PMC7866185 DOI: 10.3390/ijms22031196] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
The surfaces of grapes are covered by different yeast species that are important in the first stages of the fermentation process. In recent years, non-Saccharomyces yeasts such as Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, and Pichia kluyveri have become popular with regard to winemaking and improved wine quality. For that reason, several manufacturers started to offer commercially available strains of these non-Saccharomyces species. P. kluyveri stands out, mainly due to its contribution to wine aroma, glycerol, ethanol yield, and killer factor. The metabolism of the yeast allows it to increase volatile molecules such as esters and varietal thiols (aroma-active compounds), which increase the quality of specific varietal wines or neutral ones. It is considered a low- or non-fermentative yeast, so subsequent inoculation of a more fermentative yeast such as Saccharomyces cerevisiae is indispensable to achieve a proper fermented alcohol. The impact of P. kluyveri is not limited to the grape wine industry; it has also been successfully employed in beer, cider, durian, and tequila fermentation, among others, acting as a promising tool in those fermentation processes. Although no Pichia species other than P. kluyveri is available in the regular market, several recent scientific studies show interesting improvements in some wine quality parameters such as aroma, polysaccharides, acid management, and color stability. This could motivate yeast manufacturers to develop products based on those species in the near future.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Fernando Calderón
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain;
| | - Antonio Santos
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Domingo Marquina
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-913363710 or +34-913363984
| |
Collapse
|
4
|
Capozzi V, Garofalo C, Chiriatti MA, Grieco F, Spano G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol Res 2015; 181:75-83. [DOI: 10.1016/j.micres.2015.10.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
|
5
|
Labbani FZK, Turchetti B, Bennamoun L, Dakhmouche S, Roberti R, Corazzi L, Meraihi Z, Buzzini P. A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts. Antonie van Leeuwenhoek 2015; 107:961-70. [PMID: 25618417 DOI: 10.1007/s10482-015-0388-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
A novel killer protein (Pkkp) secreted by a Pichia kluyveri strain isolated from an Algerian soil was active against food and beverage spoilage yeasts of the genera Dekkera, Kluyveromyces, Pichia, Saccharomyces, Torulaspora, Wickerhamomyces and Zygosaccharomyces. After purification by gel filtration chromatography Pkkp revealed an apparent molecular mass of 54 kDa with SDS-PAGE. Minimum inhibitory concentrations (MICs) of purified Pkkp exhibited a high in vitro activity against Dekkera bruxellensis (MICs from 64,000- to 256,000-fold lower than that exhibited by potassium metabisulphite) and Saccharomyces cerevisiae (MICs from 32,000- to 64,000- fold lower than potassium sorbate). No in vitro synergistic interactions (calculated by FIC index - Σ FIC) were observed when Pkkp was used in combination with potassium metabisulphite, potassium sorbate, or ethanol. Pkkp exhibited a dose-response effect against D. bruxellensis and S. cerevisiae in a low-alcoholic drink and fruit juice, respectively. The results of the present study suggest that Pkkp could be proposed as a novel food-grade compound useful for the control of food and beverage spoilage yeasts.
Collapse
Affiliation(s)
- Fatima-Zohra Kenza Labbani
- Department of Molecular and Cellular Biology, Natural and Life Sciences Faculty, Abbes Laghrour University of Khenchela, Route Batna, 40004, Khenchela, Algeria,
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 2014; 188:83-91. [PMID: 25087208 DOI: 10.1016/j.ijfoodmicro.2014.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 11/24/2022]
Abstract
Wine spoilage associated with Brettanomyces bruxellensis is a major concern for winemakers. An effective and reliable method to control the proliferation of this yeast is therefore of utmost importance. To achieve this purpose, sulphur dioxide (SO2) is commonly employed but the efficiency of this chemical compound is subject to wine composition and it can elicit allergic reactions in some consumers. Biological alternatives are therefore actively sought. The current study focused on identifying and characterizing killer toxins which are antimicrobial compounds that show potential in inhibiting B. bruxellensis in wine. Two killer toxins, CpKT1 and CpKT2, from the wine isolated yeast Candida pyralidae were identified and partially characterized. The two proteins had a molecular mass above 50kDa and exhibited killer activity against several B. bruxellensis strains especially in grape juice. They were active and stable at pH3.5-4.5, and temperatures between 15 and 25°C which are compatible with winemaking conditions. Furthermore, the activity of these killer toxins was not affected by the ethanol and sugar concentrations typically found in grape juice and wine. In addition, these killer toxins inhibited neither the Saccharomyces cerevisiae nor the lactic acid bacteria strains tested. These preliminary results indicated that the application of these toxins will have no effect on the main microbial agents that drive alcoholic and malolactic fermentations and further highlight the potential of using these toxins as agents to control the development of B. bruxellensis in grape juice or wine.
Collapse
|
7
|
Jolly NP, Varela C, Pretorius IS. Not your ordinary yeast: non-Saccharomycesyeasts in wine production uncovered. FEMS Yeast Res 2013; 14:215-37. [DOI: 10.1111/1567-1364.12111] [Citation(s) in RCA: 521] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/07/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Neil P. Jolly
- ARC Infruitec-Nietvoorbij; Stellenbosch South Africa
| | - Cristian Varela
- The Australian Wine Research Institute; Adelaide SA Australia
| | | |
Collapse
|
8
|
Abstract
Intraspecific differentiation of pathogenic microorganisms is a major need in epidemiological studies concerning the source and spread of infections. This requirement is paramount for those etiologic agents of infectious diseases, which are mainly grouped into one species within the genus, such as Candida albicans. Ideally, laboratory methods for biotyping purposes should be sensitive, reproducible, easy, and economical to perform. In addition, the methods should be flexible in their application to taxonomically unrelated pathogens. We have shown that the toxins produced by a selected panel of killer yeasts, each characterized by a wide spectrum of antimicrobial activity, may be used to discriminate strains belonging to the species of the genus Candida and to other species of eukaryotic and prokaryotic pathogenic microorganisms. The "yeast killer system," which may be sharply increased in sensitivity by addition of further standardized killer yeasts, has proven to be of value in the resolution of many cases of clinical and nosocomial fungal infections. Owing to its reliability, economy, and versatility, this phenotypic system can be used as an alternative biotyping method in laboratories lacking the financial and training resources necessary to perform more sophisticated and expensive molecular approaches.
Collapse
|
9
|
Séguy N, Polonelli L, Dei-Cas E, Cailliez JC. Effect of a killer toxin of Pichia anomala to Pneumocystis. Perspectives in the control of pneumocystosis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:145-9. [PMID: 9792073 DOI: 10.1111/j.1574-695x.1998.tb01199.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the development of drugs in the prophylaxis of pneumocystosis, Pneumocystis carinii remains a major opportunistic microorganism in immunosuppressed individuals, especially in human immunodeficiency virus-infected patients. Since side effects were frequently observed after administration of trimethoprim-sulfamethoxazole or pentamidine, the drugs which are mainly used in treating human P. carinii pneumonia (PCP), new therapeutic strategies should be developed. Over the last years, the inhibitory effect of a Pichia anomala killer toxin (PaKT), a molecule with a wide spectrum of antimicrobial activity, was characterized on P. carinii. The susceptibility of mouse and rat-derived Pneumocystis to PaKT has been demonstrated by in vitro attachment tests and in vivo infectivity assays. Nevertheless, PaKT is strongly antigenic, toxic and could not be used directly as a therapeutic agent. Then, a new strategy using killer toxin-like anti-idiotypic antibodies (KT-antiIds) mimicking the fungal toxin activity has been developed. Different KT-antiIds were obtained by idiotypic immunization with a monoclonal antibody (mabKT4). This mabKT4 neutralized the killer properties of the PaKT. KT-antiIds were produced by immunization against the variable domain (idiotype) of mAbKT4 (internal image of the killer toxin receptor), or they were obtained directly from vaginal fluid of patients affected by recurrent vaginal candidiosis. In this last case, such natural KT-antiIds were immunopurified by affinity-chromatography with mAbKT4 and their anti-P. carinii activity was then evaluated. Our results showed that both the in vitro attachment of rat-derived parasites and their infectivity to nude rats were inhibited by the KT-antiIds. With regard to KT-antiIds obtained by immunization, the antimicrobial activity of a monoclonal KT-antiIds (mAbK10) has been evaluated by using a PCP experimental nude rat model treated by mAbK10 administered by aerosol. The pneumocystosis extension was significantly reduced in this model. The monoclonal KT-antiIds were effective against P. carinii in reducing parasite proliferation in lungs of nude rats. Further experiments are in progress to study the in vivo anti-P. carinii activity of KT-antiIds by using recombinant single-chain of the variable fragment of KT-antiIds. Yeast killer toxin-like recombinant molecules could provide the basis for a new therapeutic strategy towards the control of pneumocystosis.
Collapse
Affiliation(s)
- N Séguy
- Dépt. Microbiol. Ecosystèmes, Institut Pasteur de Lille, France.
| | | | | | | |
Collapse
|
10
|
MATHEWS HL, CONTI S, WITEK-JANUSEK L, POLONELLI L. Effect of Pichia anomala killer toxin on Candida albicans. Med Mycol 1998. [DOI: 10.1046/j.1365-280x.1998.00138.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Puchkov EO, Yurkova TV, Golubev WI. Effects of Cryptococcus humicola killer toxin upon Cryptococcus terreus envelope: combined fluorometric and microscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1381:61-7. [PMID: 9659372 DOI: 10.1016/s0304-4165(98)00012-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Killer toxin (microcin) produced by Cryptococcus humicola 9-6 induced interaction of the fluorogenic dyes, ethidium bromide, propidium iodide, and hemimagnesium 8-anilino-1-naphtalenesulfonate, with the sensitive strain of Cryptococcus terreus VKM Y-2253. The toxin also made the cells susceptible to cetyltrimethylammonium bromide and leaky for K+. When excited at 360 nm, cell-bound ethidium (propidium) fluorescence was enhanced by 8-anilino-1-naphtalensulfonate, and cell-bound 8-anilino-1-naphtalensulfonate fluorescence was quenched by ethidium (propidium), indicating energy transfer from 8-anilino-1-naphtalensulfonate to ethidium (propidium). These results suggest that at least a portion of the probe molecules had the same binding site, possibly the cytoplasmic membrane. The parameters of kinetics of microcin action were evaluated fluorometrically. They were found to be identical for all probes and depended on microcin concentration. The fluorescence increment of ethidium and 8-anilino-1-naphtalensulfonate upon binding to microcin-treated cells correlated with the fraction of stainable cells and viability.
Collapse
Affiliation(s)
- E O Puchkov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation.
| | | | | |
Collapse
|
12
|
Mathews H, Conti S, Witek-Janusek L, Polonelli L. Effect ofPichia anomalakiller toxin onCandida albicans. Med Mycol 1998. [DOI: 10.1080/02681219880000301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|
14
|
Starmer WT, Ganter PF, Aberdeen V. Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Appl Environ Microbiol 1992; 58:990-7. [PMID: 1575502 PMCID: PMC195367 DOI: 10.1128/aem.58.3.990-997.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Representative strains (n = 61) of the yeast Pichia kluyveri from across the United States were studied for their ability to kill 71 other strains (representing 25 species) of yeast. This survey showed killing activity in 69% of the P. kluyveri strains tested. More extensive analysis of killer activity of 197 P. kluyveri strains against strains of five tester species showed comparable activity (67% of strains tested). This activity was shown to be equally variable within localities, within regions, and across the continent. The genetic basis of the variability was ascertained by tetrad analysis and is most likely due to alleles segregating at three epistatic loci. Evidence for the idea that killer toxins have a role in excluding other yeasts from particular habitats is discussed.
Collapse
Affiliation(s)
- W T Starmer
- Department of Biology, Syracuse University, New York 13244-1270
| | | | | |
Collapse
|
15
|
Abstract
To determine the functional domains of K1 killer toxin, we analyzed the phenotypes of a set of mutations throughout regions encoding the alpha- and beta-toxin subunits that allow secretion of mutant toxins. A range of techniques have been used to examine the ability of mutant toxins to bind to beta-glucan cell wall receptor and to form lethal ion channels. Our results indicate that both the alpha and beta subunits are involved in beta-glucan receptor binding. Defects in ion channel formation and toxin immunity are confined to the hydrophobic alpha subunit of the toxin.
Collapse
|
16
|
Abstract
To determine the functional domains of K1 killer toxin, we analyzed the phenotypes of a set of mutations throughout regions encoding the alpha- and beta-toxin subunits that allow secretion of mutant toxins. A range of techniques have been used to examine the ability of mutant toxins to bind to beta-glucan cell wall receptor and to form lethal ion channels. Our results indicate that both the alpha and beta subunits are involved in beta-glucan receptor binding. Defects in ion channel formation and toxin immunity are confined to the hydrophobic alpha subunit of the toxin.
Collapse
Affiliation(s)
- H Zhu
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Sawant AD, Ahearn DG. Involvement of a cell wall receptor in the mode of action of an anti-Candida toxin of Pichia anomala. Antimicrob Agents Chemother 1990; 34:1331-5. [PMID: 2201251 PMCID: PMC175976 DOI: 10.1128/aac.34.7.1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hanes-Woolf, Dixon, and Hill plots of growth rates of Candida albicans RC1 grown in various concentrations of glucose and a Pichia anomala WC65 toxin suggested the presence of toxin-binding sites. Indirect immunofluorescence microscopy with antitoxin antibodies demonstrated binding of the toxin to the cell wall. Resistance to the toxin of a mutant Saccharomyces cerevisiae deficient in cell wall beta-1-6-D-glucan suggests that the glucan either served as the receptor or influenced the number or composition of the receptor. Immunofluorescence that appeared to be associated with the cell membrane of toxin-treated spheroplasts of C. albicans was also observed. Spheroplasts of the resistant mutant of S. cerevisiae were sensitive to the toxin.
Collapse
Affiliation(s)
- A D Sawant
- Laboratory for Microbial Science, Georgia State University, Atlanta 30303
| | | |
Collapse
|
18
|
Bussey H, Boone C, Zhu H, Vernet T, Whiteway M, Thomas DY. Genetic and molecular approaches to synthesis and action of the yeast killer toxin. EXPERIENTIA 1990; 46:193-200. [PMID: 2406163 DOI: 10.1007/bf02027313] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The K1 killer toxin of Saccharomyces cerevisiae is a secreted, virally-coded protein lethal to sensitive yeasts. Killer yeasts are immune to the toxin they produce. This killer system has been extensively examined from genetic and molecular perspectives. Here we review the biology of killer yeasts, and examine the synthesis and action of the protein toxin and the immunity component. We summarise the structure of the toxin precursor gene and its protein products, outline the proteolytic processing of the toxin subunits from the precursor, and their passage through the yeast secretory pathway. We then discuss the mode of action of the toxin, its lectin-like interaction with a cell wall glucan, and its probable role in forming channels in the yeast plasma membrane. In addition we describe models of how a toxin precursor species functions as the immunity component, probably by interfering with channel formation. We conclude with a review of the functional domains of the toxin structural gene as determined by site-directed mutagenesis. This work has identified regions associated with glucan binding, toxin activity, and immunity.
Collapse
Affiliation(s)
- H Bussey
- Dept of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Our own studies on the yeast killer phenomenon have been concentrated on its application for the differentiation of opportunistic pathogenic yeast isolates within the same species and its use as an epidemiological marker in nosocomial infections caused by yeasts. Our most recent investigations have led us to reevaluate the potential uses of this phenomenon, since it is now apparent that other microorganisms, unrelated to yeasts, are susceptible to the effects of these toxins. The yeast killer phenomenon can theoretically be used to study epidemiological aspects of any pathogenic microorganism, especially when other systems are not available. Monoclonal antibodies produced against a crude toxic extract of a killer yeast (Pichia anomala UCSC 25F) active against a large number of microorganisms were used to carry out a serological study on metabolic products of various yeasts with known and unknown genetic determinants of their killer characteristics. The extract itself had demonstrated a therapeutic effect in vivo when applied topically. Anti-idiotypic antibodies against these monoclonal antibodies were raised in rabbits. In vitro, these anti-Ids mimicked the action of the killer toxin used as immunogen in the production of monoclonal antibodies. The perspectives of investigations on yeast killer phenomenon are discussed.
Collapse
Affiliation(s)
- L Polonelli
- Istituto di Microbiologia, Università degli Studi di Parma, Italy
| | | |
Collapse
|
20
|
|
21
|
|
22
|
Abstract
The toxic action of yeast killer proteins seems to involve selective functional damage to the plasma membrane of the sensitive cell. Physiological effects include leakage of K+ (refs 1, 2), inhibition of active transport of amino acids and acidification of the cell interior. These effects are strikingly similar to the effects of certain bacterial colicins which have been demonstrated previously to form channels in membranes. Proposed mechanisms of action have usually postulated a limited permeability change induced by the toxin in the plasma membrane. We report here that a killer toxin from the yeast Pichia kluyveri forms ion-permeable channels in phospholipid bilayer membranes, and we propose that the in vitro electrophysiological properties of these channels account for the morbid effects observed in intoxicated cells. A preliminary account of this work has appeared elsewhere.
Collapse
|
23
|
Middelbeek EJ, Crützen QH, Vogels GD. Effects of potassium and sodium ions on the killing action of a Pichia kluyveri toxin in cells of Saccharomyces cerevisiae. Antimicrob Agents Chemother 1980; 18:519-24. [PMID: 7004340 PMCID: PMC284041 DOI: 10.1128/aac.18.4.519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Loss of viability of toxin-treated cells of Saccharomyces cerevisiae SCF 1717 could be prevented in the period before they altered physiologically if cells were incubated in media with a suitable concentration of potassium (0.08 to 0.13 M) and hydrogen ions (pH 6.2 to 6.7). Incorporation of higher amounts of potassium chloride in the media had a pronounced negative effect on cell survival, particularly when the pH of the medium was lowered. Replacement of KCl by NaCl in the plate media was even more deleterious to toxin-treated cells and, in contrast with potassium, low concentrations of sodium ions could not sustain recovery of cells. Complete recovery of a toxin-treated cell suspension required an incubation of 3 h in a suitable medium. The recovery process was blocked by cycloheximide.
Collapse
|
24
|
Middelbeek EJ, van de Laar HH, Hermans JM, Stumm C, Vogels GD. Physiological conditions affecting the sensitivity of Saccharomyces cerevisiae to a Pichia kluyveri killer toxin and energy requirement for toxin action. Antonie Van Leeuwenhoek 1980; 46:483-97. [PMID: 6453558 DOI: 10.1007/bf00395829] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interaction between the killer toxin of Pichia kluyveri 1002 and cells of Saccharomyces cerevisiae SCF 1717 is strongly affected by the physiological state of sensitive cells. The killing effect is maximal for cells in the lag and early exponential phase of growth, whereas stationary cells are completely resistant. Furthermore, sensitivity is markedly enhanced by a rise of the pH (from 3.2 to 6.8) at which cells are cultured. Three successive stages can be distinguished in the killing process: (I) binding of the toxin to the primary binding site; (II) transmission of the toxin to its reactive site in the plasma membrane; (III) occurrence of functional damage (K+-leakage; decrease of intracellular pH). The transition from stage I to II is prevented in the absence of metabolic energy or at low temperature (below 10 degrees C). Sensitive cells in stage I can be rescued from toxin-induced killing by a short incubation at pH 7.0, which treatment is not effective for cells in stage II. Cells in stage II are able to resume growth when plated in a rich medium containing suitable concentrations of potassium and hydrogen ions. Rescue was not observed for cells in stage III of the killing process.
Collapse
|