1
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
2
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
3
|
Novita Sari I, Setiawan T, Seock Kim K, Toni Wijaya Y, Won Cho K, Young Kwon H. Metabolism and function of polyamines in cancer progression. Cancer Lett 2021; 519:91-104. [PMID: 34186159 DOI: 10.1016/j.canlet.2021.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Polyamines are essential for the proliferation, differentiation, and development of eukaryotes. They include spermine, spermidine, and the diamine precursor putrescine, and are low-molecular-weight, organic polycations with more than two amino groups. Their intracellular concentrations are strictly maintained within a specific physiological range through several regulatory mechanisms in normal cells. In contrast, polyamine metabolism is dysregulated in many neoplastic states, including cancer. In various types of cancer, polyamine levels are elevated, and crosstalk occurs between polyamine metabolism and oncogenic pathways, such as mTOR and RAS pathways. Thus, polyamines might have potential as therapeutic targets in the prevention and treatment of cancer. The molecular mechanisms linking polyamine metabolism to carcinogenesis must be unraveled to develop novel inhibitors of polyamine metabolism. This overview describes the nature of polyamines, their association with carcinogenesis, the development of polyamine inhibitors and their potential, and the findings of clinical trials.
Collapse
Affiliation(s)
- Ita Novita Sari
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| |
Collapse
|
4
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
5
|
Abstract
This chapter provides an overview of how the polyamine pathway has been exploited as a target for the treatment and prevention of multiple forms of cancer, since this pathway is disrupted in all cancers. It is divided into three main sections. The first explores how the polyamine pathway has been targeted for chemotherapy, starting from the first drug to target it, difluoromethylornithine (DFMO) to the large variety of polyamine analogues that have been synthesised and tested throughout the years with all their potentials and pitfalls. The second section focuses on the use of polyamines as vectors for drug delivery. Knowing that the polyamine transport system is upregulated in cancers and that polyamines naturally bind to DNA, a range of polyamine analogues and polyamine-like structures have been synthesised to target epigenetic regulators, with encouraging results. Furthermore, the use of polyamines as transport vectors to introduce toxic/bioactive/fluorescent agents more selectively to the intended target in cancer cells is discussed. The last section concentrates on chemoprevention, where the different strategies that have been undertaken to interfere with polyamine metabolism and function for antiproliferative intervention are outlined and discussed.
Collapse
Affiliation(s)
- Elisabetta Damiani
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Heather M Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
6
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
7
|
Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 2014; 148:233-48. [PMID: 25292420 DOI: 10.1007/s10549-014-3156-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is a common disease that generally occurs in women over the age of 50, and the risk is especially high for women over 60 years of age. One of the major BC therapeutic problems is that tumors initially responsive to chemotherapeutic approaches can progress to more aggressive forms poorly responsive to therapies. Polyamines (PAs) are small polycationic alkylamines, naturally occurring and essential for normal cell growth and development in eukaryotes. The intracellular concentration of PA is maintained within strongly controlled contents, while a dysregulation occurs in BC cells. Polyamines facilitate the interactions of transcription factors, such as estrogen receptors with their specific response element, and are involved in the proliferation of ER-negative and highly invasive BC tumor cells. Since PA metabolism has a critical role in cell death and proliferation, it represents a potential target for intervention in BC. The goal of this study was to perform a literature search reviewing the association between PA metabolism and BC, and the current evidence supporting the BC treatment targeting PA metabolism. We here describe in vitro and in vivo models, as well as the clinical trials that have been utilized to unveil the relationship between PA metabolism and BC. Polyamine pathway is still an important target for the development of BC chemotherapy via enzyme inhibitors. Furthermore, a recent promising strategy in breast anticancer therapy is to exploit the self-regulatory nature of PA metabolism using PA analogs to affect PA homeostasis. Nowadays, antineoplastic compounds targeting the PA pathway with novel mechanisms are of great interest and high social impact for BC chemotherapy.
Collapse
|
8
|
Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 2013; 15:e3. [PMID: 23432971 DOI: 10.1017/erm.2013.3] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes, and a poorly characterised transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate and skin cancers, and altered levels of rate-limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway-specific drugs and ongoing clinical trials targeting polyamine biosynthesis.
Collapse
|
9
|
Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts. Biochem J 2009; 422:101-9. [PMID: 19473115 DOI: 10.1042/bj20090411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SSAT (Spermidine/spermine N1-acetyltransferase, also known as SAT1), the key enzyme in the catabolism of polyamines, is turned over rapidly and there is only a low amount present in the cell. In the present study, the regulation of SSAT by spermine analogues, the inducers of the enzyme, was studied in wild-type mouse fetal fibroblasts, expressing endogenous SSAT, and in the SSAT-deficient mouse fetal fibroblasts transiently expressing an SSAT-EGFP (enhanced green fluorescent protein) fusion gene. In both cell lines treatments with DENSpm (N(1),N(11)-diethylnorspermine), CPENSpm (N(1)-ethyl-N(11)-[(cyclopropyl)-methy]-4,8-diazaundecane) and CHENSpm (N(1)-ethyl-N(11)-[(cycloheptyl)methy]-4,8-diazaundecane) led to high, moderate or low induction of SSAT activity respectively. The level of activity detected correlated with the presence of SSAT and SSAT-EGFP proteins, the latter localizing both in the cytoplasm and nucleus. RT-PCR (reverse transcription-PCR) results suggested that the analogue-affected regulation of SSAT-EGFP expression occurred, mainly, after transcription. In wild-type cells, DENSpm increased the amount of SSAT mRNA, and both DENSpm and CHENSpm affected splicing of the SSAT pre-mRNA. Depleted intracellular spermidine and spermine levels inversely correlated with detected SSAT activity. Interestingly, the analogues also reduced polyamine levels in the SSAT-deficient cells expressing the EGFP control. The results from the present study show that the distinct SSAT regulation by different analogues involves regulatory actions at multiple levels, and that the spermine analogues, in addition to inducing SSAT, lower intracellular polyamine pools by SSAT-independent mechanisms.
Collapse
|
10
|
Casero RA, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 2007; 6:373-90. [PMID: 17464296 DOI: 10.1038/nrd2243] [Citation(s) in RCA: 587] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polyamines spermidine and spermine and their diamine precursor putrescine are naturally occurring, polycationic alkylamines that are essential for eukaryotic cell growth. The requirement for and the metabolism of polyamines are frequently dysregulated in cancer and other hyperproliferative diseases, thus making polyamine function and metabolism attractive targets for therapeutic intervention. Recent advances in our understanding of polyamine function, metabolic regulation, and differences between normal cells and tumour cells with respect to polyamine biology, have reinforced the interest in this target-rich pathway for drug development.
Collapse
Affiliation(s)
- Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
11
|
Wallace HM, Niiranen K. Polyamine analogues – an update. Amino Acids 2007; 33:261-5. [PMID: 17443267 DOI: 10.1007/s00726-007-0534-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/01/2007] [Indexed: 01/11/2023]
Abstract
The polyamines are growth factors in both normal and cancer cells. As the intracellular polyamine content correlates positively with the growth potential of that cell, the idea that depletion of polyamine content will result in inhibition of cell growth and, particularly tumour cell growth, has been developed over the last 15 years. The polyamine pathway is therefore a target for development of rationally designed, antiproliferative agents. Following the lessons from the single enzyme inhibitors (alpha-difluoromethylornithine DFMO), three generations of polyamine analogues have been synthesised and tested in vitro and in vivo. The analogues are multi-site inhibitors affecting multiple reactions in the pathway and thus prevent the up-regulation of compensatory reactions that have been the downfall of DFMO in anticancer chemotherapy. Although the initial concept was that the analogues may provide novel anticancer drugs, it now seems likely that the analogues will have wider applications in diseases involving hyperplasia.
Collapse
Affiliation(s)
- H M Wallace
- Department of Medicine and Therapeutics, School of Medicine and School of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | |
Collapse
|
12
|
Ji S, Xiao Q, Ju Y, Zhao Y. Synthesis of Novel Dimeric Steroidal-nucleoside Phosphoramidates. CHEM LETT 2005. [DOI: 10.1246/cl.2005.944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
|
14
|
Huang Y, Keen JC, Hager E, Smith R, Hacker A, Frydman B, Valasinas AL, Reddy VK, Marton LJ, Casero RA, Davidson NE. Regulation of Polyamine Analogue Cytotoxicity by c-Jun in Human MDA-MB-435 Cancer Cells. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.81.2.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Several polyamine analogues have efficacy against a variety of epithelial tumor models including breast cancer. Recently, a novel class of polyamine analogues designated as oligoamines has been developed. Here, we demonstrate that several representative oligoamine compounds inhibit in vitro growth of human breast cancer MDA-MB-435 cells. The activator protein-1 (AP-1) transcriptional factor family members, c-Jun and c-Fos, are up-regulated by oligoamines in MDA-MB-435 cells, suggesting a possible AP-1-dependent induction of apoptosis. However, the use of a novel c-Jun NH2-terminal kinase (JNK) inhibitor, SP600125, suggests that inhibition of c-Jun activity sensitized tumor cells to oligoamine-induced cell death. To directly test this hypothesis, cells were stably transfected with the dominant-negative mutant c-Jun (TAM67), which lacks the NH2-terminal transactivation domain. Cells overexpressing TAM67 exhibit normal growth kinetics but demonstrate a significantly increased sensitivity to oligoamine cytotoxicity and attenuated colony formation after oligoamine treatment. Furthermore, oligoamine treatment leads to more profound caspase-3 activation and poly(ADP-ribose) polymerase cleavage in TAM67 transfectants, suggesting that c-Jun acts as an antiapoptosis factor in MDA-MB-435 cells in response to oligoamine treatment. These findings indicate that oligoamine-inducible AP-1 plays a prosurvival role in oligoamine-treated MDA-MB-435 cells and that JNK/AP-1 might be a potential target for enhancing the therapeutic efficacy of polyamine analogues in human breast cancer.
Collapse
Affiliation(s)
- Yi Huang
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Judith C. Keen
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Erin Hager
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Renee Smith
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Amy Hacker
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | | | | | | | | | - Robert A. Casero
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Nancy E. Davidson
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| |
Collapse
|
15
|
Fraser AV, Woster PM, Wallace HM. Induction of apoptosis in human leukaemic cells by IPENSpm, a novel polyamine analogue and anti-metabolite. Biochem J 2002; 367:307-12. [PMID: 12086584 PMCID: PMC1222862 DOI: 10.1042/bj20020156] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 06/26/2002] [Accepted: 06/27/2002] [Indexed: 11/17/2022]
Abstract
Human promyelogenous leukaemic cells (HL-60) were treated with novel spermine analogue, ( S )- N (1)-(2-methyl-1-butyl)- N (11)-ethyl-4,8-diazaundecane (IPENSpm), and the effects on growth and intracellular polyamine metabolism were measured. IPENSpm was cytotoxic to these cells at concentrations greater than 2.5 microM. It induced apoptosis in a caspase-dependent manner and its toxicity profile was comparable with etoposide, a well-known anti-tumour agent and inducer of apoptosis. IPENSpm decreased intracellular polyamine content as a result of changes in ornithine decarboxylase activity and increases in spermidine/spermine N(1)-acetyltransferase and polyamine export. Analysis showed spermine and spermidine as the major intracellular polyamines, while putrescine and acetyl-polyamines were the main export compounds. IPENSpm used the polyamine transporter system for uptake and its accumulation in cells was prevented by polyamine transport inhibitors. IPENSpm can be classified as a polyamine anti-metabolite and it may be a promising new lead compound in terms of treatment of some human cancers.
Collapse
Affiliation(s)
- Alison V Fraser
- Departments of Medicine & Therapeutics and Biomedical Sciences, Polwarth Building, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, U.K
| | | | | |
Collapse
|
16
|
Bergeron RJ, Müller R, Huang G, McManis JS, Algee SE, Yao H, Weimar WR, Wiegand J. Synthesis and evaluation of hydroxylated polyamine analogues as antiproliferatives. J Med Chem 2001; 44:2451-9. [PMID: 11448227 DOI: 10.1021/jm000532q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new means of accessing N(1)-cyclopropylmethyl-N(11)-ethylnorspermine (CPMENSPM) and the first synthesis of (2R,10S)-N(1)-cyclopropylmethyl-2,10-dihydroxy-N(11)-ethylnorspermine [(2R,10S)-(HO)(2)CPMENSPM] are described. Both of these polyamine analogues are shown to be more active against L1210 murine leukemia cell growth than either N(1),N(11)-diethylnorspermine (DENSPM) or (2R,10R)-N(1),N(11)-diethyl-2,10-dihydroxynorspermine [(2R,10R)-(HO)(2)DENSPM] after 96 h of treatment; the activity was comparable to that of (2S,10S)-N(1),N(11)-diethyl-2,10-dihydroxynorspermine [(2S,10S)-(HO)(2)DENSPM] at 96 h. Both cyclopropyl compounds reduced putrescine and spermidine pools, but less effectively than did DENSPM and its derivatives. Only CPMENSPM, and not (2R,10S)-(HO)(2)CPMENSPM, lowered spermine pools. As with DENSPM and (2R,10R)-(HO)(2)DENSPM, both cyclopropyl analogues diminished ornithine decarboxylase and S-adenosylmethionine decarboxylase activity. Unlike the hydroxylated DENSPM compounds, both cyclopropyl norspermines substantially upregulated spermidine/spermine N(1)-acetyltransferase. The most interesting effect of hydroxylating CPMENSPM is the profound reduction in toxicity compared with that of the parent drug. The same phenomenon had been observed for the DENSPM/(2R,10R)-(HO)(2)DENSPM pair. Thus, hydroxylation of norspermine analogues appears to be a way to maintain the compounds' antiproliferative activity while reducing their toxicity.
Collapse
Affiliation(s)
- R J Bergeron
- Department of Medicinal Chemistry, J. Hillis Miller Health Science Center, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Faaland CA, Thomas TJ, Balabhadrapathruni S, Langer T, Mian S, Shirahata A, Gallo MA, Thomas T. Molecular correlates of the action of bis(ethyl)polyamines in breast cancer cell growth inhibition and apoptosis. Biochem Cell Biol 2001. [PMID: 11012080 DOI: 10.1139/o00-017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Polyamines are known to be involved in cell growth regulation in breast cancer. To evaluate the efficacy of bis(ethyl)polyamine analogs for breast cancer therapy and to understand their mechanism of action we measured the effects of a series of polyamine analogs on cell growth, activities of enzymes involved in polyamine metabolism, intracellular polyamine levels, and the uptake of putrescine and spermidine using MCF-7 breast cancer cells. The IC50 values for cell growth inhibition of three of the compounds, N1,N12-bis(ethyl)spermine, N1,N11-bis(ethyl)norspermine, and N1,N14-bis(ethyl)homospermine, were in the range of 1-2 microM. Another group of three compounds showed antiproliferative activity at about 5 microM level. These compounds are also capable of suppressing colony formation in soft agar assay and inducing apoptosis of MCF-7 cells. The highly effective growth inhibitory agents altered the activity of polyamine biosynthetic and catabolic enzymes and down-regulated the transport of natural polyamines, although each compound produced a unique pattern of alterations in these parameters. HPLC analysis showed that cellular uptake of bis(ethyl)polyamines was highest for bis(ethyl)spermine. We also analyzed polyamine analog conformations and their binding to DNA minor or major grooves by molecular modelling and molecular dynamics simulations. Results of these analyses indicate that tetramine analogs fit well in the minor groove of DNA whereas, larger compounds extend out of the minor groove. Although major groove binding was also possible for the short tetramine analogs, this interaction led to a predominantly bent conformation. Our studies show growth inhibitory activities of several potentially important analogs on breast cancer cells and indicate that multiple sites are involved in the mechanism of action of these analogs. While the activity of an analog may depend on the sum of these different effects, molecular modelling studies indicate a correlation between antiproliferative activity and stable interactions of the analogs with major or minor grooves of DNA.
Collapse
Affiliation(s)
- C A Faaland
- Department of Environmental and Community Medicine, Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- R A Casero
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
19
|
Erez O, Kahana C. Screening for modulators of spermine tolerance identifies Sky1, the SR protein kinase of Saccharomyces cerevisiae, as a regulator of polyamine transport and ion homeostasis. Mol Cell Biol 2001; 21:175-84. [PMID: 11113192 PMCID: PMC88791 DOI: 10.1128/mcb.21.1.175-184.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants of Saccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Delta cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity of PPZ1 but not of ENA1.
Collapse
Affiliation(s)
- O Erez
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
20
|
McCloskey DE, Pegg AE. Altered spermidine/spermine N1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues. J Biol Chem 2000; 275:28708-14. [PMID: 10887189 DOI: 10.1074/jbc.m004120200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To develop a model system to investigate mechanisms of antiproliferative action of bis(ethyl)polyamine analogues, intermittent analogue treatments followed by recovery periods in drug-free medium were used to select an N(1), N(12)-bis(ethyl)spermine-resistant derivative of the Chinese hamster ovary cell line C55.7. The resulting C55.7Res line was at least 10-fold resistant to N(1),N(12)-bis(ethyl)spermine and N(1), N(11)-bis(ethyl)norspermine. The stability of the resistance in the absence of selection pressure was >/=9 months, indicating that a heritable genotypic change was responsible for the resistance phenotype. Polyamine transport alterations and multi-drug resistance were eliminated as causes of the resistance. Spermidine/spermine N(1)-acetyltransferase (SSAT) activity and regulation were altered in C55.7Res cells as basal activity was decreased, and no activity induction resulted from exposure to analogue concentrations, which caused 300-fold enzyme induction in parental cells. SSAT mRNA levels in the absence and presence of analogue were unchanged, but no SSAT protein was detected in C55.7Res cells. A point mutation, which results in the change leucine156 (a fully conserved residue) to phenylalanine, was identified in the C55.7Res SSAT cDNA. Expression of wtSSAT activity in C55.7Res cells restored sensitivity to bis(ethyl)polyamines. These results provided definitive evidence that SSAT activity is a critical target of the cytotoxic action of these analogues.
Collapse
Affiliation(s)
- D E McCloskey
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
21
|
Nairn LM, Lindsay GS, Woster PM, Wallace HM. Cytotoxicity of novel unsymmetrically substituted inhibitors of polyamine biosynthesis in human cancer cells. J Cell Physiol 2000; 182:209-13. [PMID: 10623884 DOI: 10.1002/(sici)1097-4652(200002)182:2<209::aid-jcp9>3.0.co;2-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cytotoxicity of two novel polyamine analogues was compared with that of a known cytotoxic drug, etoposide, in a human promyelogenous leukemic cell line. CHEN-spm showed significant acute cytotoxicity in these cells and was comparable to etoposide in terms of IC(50) value. The cell death observed from both CHEN-spm and etoposide was typically apoptotic with increased DNA fragmentation, altered cell morphology, and cell cycle distribution. CPEN-spm, on the other hand, exhibited no toxic effects over the short-term (24 h) exposure period. Intracellular polyamine content decreased in the presence of all inhibitors but only CPEN-spm produced significant induction of spermidine/spermine N(1)-acetyltransferase in 24 h. Thus, increased polyamine catabolism appears not to be essential for the initiation of apoptotic cell death in these human leukemic cells.
Collapse
Affiliation(s)
- L M Nairn
- Department of Medicine and Therapeutics, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
22
|
Wang Y, Devereux W, Stewart TM, Casero RA. Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J Biol Chem 1999; 274:22095-101. [PMID: 10419538 DOI: 10.1074/jbc.274.31.22095] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increased transcription and ultimate superinduction of the spermidine/spermine N(1)-acetyltransferase (SSAT) gene has been associated with the antineoplastic activity of several new antitumor polyamine analogues. In sensitive tumor cell types, the transcriptional induction appears to be regulated by the constitutive association of the transcription factor Nrf-2 with the recently discovered polyamine-responsive element. Using the yeast two-hybrid system, a new transcriptional cofactor, polyamine-modulated factor-1 (PMF-1), has been identified as a partner protein of Nrf-2 that, in combination with Nrf-2, regulates the polyamine analogue-induced transcription of SSAT. The human PMF-1 gene, located on chromosome 1 near the 1q12/1q21 border, yields an mRNA transcript of approximately 1.2 kilobases that codes for a 165-amino acid protein with a predicted molecular mass of approximately 20 kDa. The PMF-1 mRNA appears to increase in response to analogue exposure only in analogue-responsive cells. In addition to the transcriptional regulation of SSAT, PMF-1 or similar factors should be considered in the regulation of other polyamine-dependent genes.
Collapse
Affiliation(s)
- Y Wang
- Johns Hopkins Oncology Center Research Laboratories, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
23
|
Webb HK, Wu Z, Sirisoma N, Ha HC, Casero RA, Woster PM. 1-(N-alkylamino)-11-(N-ethylamino)-4,8-diazaundecanes: simple synthetic polyamine analogues that differentially alter tubulin polymerization. J Med Chem 1999; 42:1415-21. [PMID: 10212127 DOI: 10.1021/jm980603+] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyamine analogues such as bis(ethyl)norspermine and N1-(cyclopropylmethyl)-N11-ethyl-4,8-diazaundecane (CPENSpm) act as potent modulators of cellular polyamine metabolism in vitro and possess impressive antitumor activity against a number of cell lines. Some of these polyamine analogues appear to produce their cell-type-specific cytotoxic activity through the superinduction of spermidine/spermine N1-acetyltransferase (SSAT). However, there are several analogues (e.g., N1-(cycloheptylmethyl)-N11-ethyl-4, 8-diazaundecane (CHENSpm)) which are effective cytotoxic agents but do not superinduce SSAT. We have previously demonstrated that CPENSpm and CHENSpm both initiate the cell death program, although by different mechanisms, and that CHENSpm (but not CPENSpm) induces a G2/M cell cycle arrest. We now report that one potential mechanism by which some polyamine analogues can retard growth and ultimately produce cytotoxicity is through interference with normal tubulin polymerization. In these studies, we compare the effects of the polyamine analogues CHENSpm, CPENSpm, and (S)-N1-(2-methyl-1-butyl)-N11-ethyl-4,8-diazaundecane (IPENSpm) on in vitro tubulin polymerization. These spermine analogues behave very differently from spermine and from each other in terms of tubulin polymerization rate, equilibrium levels, and time of polymerization initiation. These results demonstrate that structurally similar polyamine analogues with potent antitumor effects can produce significantly different cellular effects. The discovery of polyamine analogues that can alter tubulin polymerization provides a series of promising lead compounds that may have a similar spectrum of activity to more difficult to synthesize compounds typified by paclitaxel.
Collapse
Affiliation(s)
- H K Webb
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Xiao L, Thiagalingam A, Nelkin BD, Casero RA. The identification of a cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N1-acetyltransferase gene transcription. J Biol Chem 1998; 273:34623-30. [PMID: 9852135 DOI: 10.1074/jbc.273.51.34623] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superinduction of spermidine/spermine N1-acetyltransferase (SSAT) gene has been associated with a cytotoxic response to a new class of antineoplastic polyamine analogues. The initial mechanism of SSAT superinduction is an increase in transcription in response to analogue exposure. This increased transcription appears to be modulated through the association between a nuclear protein factor and a cis-element described here as the polyamine-responsive element (PRE). The PRE was identified as a 9-base pair sequence, 5'-TATGACTAA-3', in the context of a 31-base pair stretch from -1522 to -1492 base pairs with respect to the SSAT transcriptional start site. This element binds a nuclear factor from polyamine analogue-responsive cells, but not from polyamine analogue-insensitive cells. The labeled PRE was used to clone and identify the transcription factor, Nrf-2, that binds constitutively to the PRE sequence. Although the PRE sequence shares homology to the originally identified Nrf-2 recognition sequence, the two sequences are not identical. The Nrf-2 transcription factor appears only to be present in cell types that are capable of expressing high amounts of SSAT. The results of these studies suggest that Nrf-2, bound to the PRE, plays an important regulatory role of expression of the human SSAT gene.
Collapse
Affiliation(s)
- Y Wang
- Johns Hopkins Oncology Center Research Laboratories, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
25
|
Ha HC, Yager JD, Woster PA, Casero RA. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem Biophys Res Commun 1998; 244:298-303. [PMID: 9514920 DOI: 10.1006/bbrc.1998.8258] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species are known to induce strand breaks and/or base modifications in DNA. DNA strand breaks are associated with many pathologies and programmed cell death. We have examined the ability of the polyamines and their analogues to protect phi X-174 plasmid DNA from strand breakage induced by a oxygen-radical generating system. Spermine and several unsymmetrically substituted polyamine analogues reduced the amount of strand breakage at a physiologically relevant concentration of 1 mM. However, putrescine, spermidine, N1-acetylspermine, N1-acetylspermidine and symmetrically alkylated polyamine analogues were not able to reduce strand breakage at the same concentration. Thus, the unsymmetrically alkylated polyamine analogues and natural spermine can protect DNA against strand breakage induced by Cu(II)/H2O2 generated ROS similar to other more classical antioxidants.
Collapse
Affiliation(s)
- H C Ha
- Department of Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
26
|
Ha HC, Woster PM, Yager JD, Casero RA. The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A 1997; 94:11557-62. [PMID: 9326648 PMCID: PMC23536 DOI: 10.1073/pnas.94.21.11557] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N1-ethyl-N11-[(cyclopropyl)methyl]-4,8,-diazaundecane (CPENSpm) is a polyamine analogue that represents a new class of antitumor agents that demonstrate phenotype-specific cytotoxic activity. However, the precise mechanism of its selective cytotoxic activity is not known. CPENSpm treatment results in the superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) in sensitive cell types and has been demonstrated to induce programmed cell death (PCD). The catalysis of polyamines by the SSAT/polyamine oxidase (PAO) pathway produces H2O2 as one product, suggesting that PCD produced by CPENSpm may be, in part, due to oxidative stress as a result of H2O2 production. In the sensitive human nonsmall cell line H157, the coaddition of catalase significantly reduces high molecular weight (HMW) DNA (>/=50 kb) and nuclear fragmentation. Important to note, specific inhibition of PAO by N,N'-bis(2, 3-butadienyl)-1,4-butane-diamine results in a significant reduction of the formation of HMW DNA and nuclear fragmentation. In contrast, the coaddition of catalase or PAO inhibitor has no effect on reducing HMW DNA fragmentation induced by N1-ethyl-N11-[(cycloheptyl)methyl]-4,8,-diazaundecane, which does not induce SSAT and does not deplete intracellular polyamines. These results strongly suggest that H2O2 production by PAO has a role in CPENSpm cytotoxicity in sensitive cells via PCD and demonstrate a potential basis for differential sensitivity to this promising new class of antineoplastic agents. Furthermore, the data suggest a general mechanism by which, under certain stimuli, cells can commit suicide through catabolism of the ubiquitous intracellular polyamines.
Collapse
Affiliation(s)
- H C Ha
- Division of Toxicological Sciences, Department of Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Wu R, Saab NH, Huang H, Wiest L, Pegg AE, Casero RA, Woster PM. Synthesis and evaluation of a polyamine phosphinate and phosphonamidate as transition-state analogue inhibitors of spermidine/spermine-N1-acetyltransferase. Bioorg Med Chem 1996; 4:825-36. [PMID: 8818232 DOI: 10.1016/0968-0896(96)00072-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polyamine analogues such as bis(ethyl)norspermine and N1-ethyl-N11-[(cyclopropyl)methyl]-4,8-diazaundecane (CPENSpm) act as inhibitors of the enzyme spermidine/spermine-N1-acetyltransferase (SSAT) in vitro and possess impressive antitumor activity against a number of cell lines. However, the propensity of these compounds to superinduce SSAT in intact cells limits their usefulness in studies aimed at elucidating the role of SSAT in cellular metabolism. The recently synthesized alkylpolyamine analogue N1-ethyl-N11-[(cycloheptyl)methyl]-4,8-diazaundecane (CHENSpm, 3) is also an effective inhibitor of SSAT and has potent antitumor activity, but does not appear to superinduce SSAT. These findings suggest that it is possible to synthesize polyamine analogues that can be used for selective inhibition of the enzyme in cellular metabolic studies. Along these lines, the phosphate-based transition state analogues 4 and 5 were synthesized and evaluated as inhibitors of isolated SSAT. Phosphonamidate 4 was rapidly hydrolyzed under the assay conditions, and thus did not inhibit the enzyme. However, the phosphinate analogue 5 was an effective inhibitor of purified human SSAT, with a Ki value of 250 microM. The inhibitory activity of 5 was also compared with that of CHENSpm (IC50 = 13 microM), as well as a series of bis-substituted alkylpolyamine analogues. The unsymmetrically substituted polyamine analogue CHENSpm (3) and the phosphinate transition state analogue 5 represent the first functional, nonsuperinducing inhibitors of human SSAT.
Collapse
Affiliation(s)
- R Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang J, Xiao L, Berkey KA, Tamez PA, Coward JK, Casero RA. Significant induction of spermidine/spermine N1-acetyltransferase without cytotoxicity by the growth-supporting polyamine analogue 1,12-dimethylspermine. J Cell Physiol 1995; 165:71-6. [PMID: 7559809 DOI: 10.1002/jcp.1041650109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) has been implicated in the cell type-specific cytotoxic activity of some polyamine analogues. We now report that one polyamine analogue, 1,12-dimethylspermine (DMSpm), produces a large induction of SSAT with no significant effects on growth in the human large cell lung carcinoma line, NCl H157. This cell line has been demonstrated to respond to other analogues with SSAT superinduction and cell death. Treatment of the lung cancer cell line with DMSpm produces a rapid increase in SSAT activity and a near complete depletion of the natural polyamines. Additionally, DMSpm supports cell growth in cells which have been depleted of their natural polyamines by the ornithine decarboxylase inhibitor, 2-difluoromethylornithine. The current results suggest that significant induction of SSAT can occur in the absence of cytotoxicity when the inducing polyamine analogue can support growth and that increased SSAT activity alone is not sufficient for cytotoxicity to occur.
Collapse
Affiliation(s)
- J Yang
- Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|