1
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Photoactivation of Cell-Free Expressed Archaerhodopsin-3 in a Model Cell Membrane. Int J Mol Sci 2021; 22:ijms222111981. [PMID: 34769410 PMCID: PMC8584582 DOI: 10.3390/ijms222111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022] Open
Abstract
Transmembrane receptor proteins are located in the plasma membranes of biological cells where they exert important functions. Archaerhodopsin (Arch) proteins belong to a class of transmembrane receptor proteins called photoreceptors that react to light. Although the light sensitivity of proteins has been intensely investigated in recent decades, the electrophysiological properties of pore-forming Archaerhodopsin (Arch), as studied in vitro, have remained largely unknown. Here, we formed unsupported bilayers between two channels of a microfluidic chip which enabled the simultaneous optical and electrical assessment of the bilayer in real time. Using a cell-free expression system, we recombinantly produced a GFP (green fluorescent protein) labelled as a variant of Arch-3. The label enabled us to follow the synthesis of Arch-3 and its incorporation into the bilayer by fluorescence microscopy when excited by blue light. Applying a green laser for excitation, we studied the electrophysiological properties of Arch-3 in the bilayer. The current signal obtained during excitation revealed distinct steps upwards and downwards, which we interpreted as the opening or closing of Arch-3 pores. From these steps, we estimated the pore radius to be 0.3 nm. In the cell-free extract, proteins can be modified simply by changing the DNA. In the future, this will enable us to study the photoelectrical properties of modified transmembrane protein constructs with ease. Our work, thus, represents a first step in studying signaling cascades in conjunction with coupled receptor proteins.
Collapse
|
3
|
Kanekar PP, Kulkarni SO, Kanekar SP, Shouche Y, Jani K, Sharma A. Exploration of a haloarchaeon, Halostagnicola larsenii, isolated from rock pit sea water, West Coast of Maharashtra, India, for the production of bacteriorhodopsin. J Appl Microbiol 2015; 118:1345-56. [PMID: 25727916 DOI: 10.1111/jam.12784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 01/11/2023]
Abstract
AIMS The aim of the present investigation was to isolate haloarchaea from rock pit sea water, West Coast of India and to explore their potential in the production of bacteriorhodopsin (BR) which converts light energy into electrical energy. METHODS AND RESULTS Haloarchaeal strains were isolated from rock pit sea water samples collected from Rock garden, Malvan, West Coast of India. Based on morphological, physiological and biochemical characteristics, and 16S rRNA gene sequencing, all the 11 strains were identified as Halostagnicola larsenii. All the strains require at least 1·5 mol l(-1) NaCl for growth; grow optimally in the range of 3·5-5·2 mol l(-1) NaCl. BR was detected in all the strains ranging from 0·035 to 0·258 g l(-1) . All 11 strains showed conversion of light energy into electrical energy in the range of 0·7-44·2 mV, when exposed to sunlight. CONCLUSIONS A haloarchaeon, Hst. larsenii is isolated from rock pit sea water and demonstrated to have BR that converted light energy into electrical energy. SIGNIFICANCE AND IMPACT OF THE STUDY The present investigation is presumably the first report of the isolation of Hst. larsenii from low salinity environment and its potential in production of BR. The haloarchaeon could be explored for the generation of electrical energy.
Collapse
Affiliation(s)
- P P Kanekar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - S O Kulkarni
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - S P Kanekar
- Microbial Sciences Divison, MACS-Agharkar Research Institute, Pune, India
| | - Y Shouche
- Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune, India
| | - K Jani
- Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune, India
| | - A Sharma
- Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune, India
| |
Collapse
|
4
|
Dirmeier R, Hauska G, Stetter KO. ATP synthesis at 100 degrees C by an ATPase purified from the hyperthermophilic archaeon Pyrodictium abyssi. FEBS Lett 2000; 467:101-4. [PMID: 10664465 DOI: 10.1016/s0014-5793(00)01131-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chemolithoautotrophic archaeon Pyrodictium abyssi isolate TAG 11 lives close to 100 degrees C and gains energy by sulfur respiration, with hydrogen as electron donor. From the membranes of this hyperthermophile, an ATPase complex was isolated. The purified enzyme consists of six major polypeptides, the 67, 51, 41, 26 and 22 kDa subunits composing the AF(1) headpiece, and the 7 kDa proteolipid of the AF(0) component. The headpiece of the enzyme restored the formation of ATP during sulfur respiration in membrane vesicles from which it had been removed by low salt treatment. Characteristics of the reconstituted activity suggest that the same enzyme is responsible for ATP formation in untreated membranes. ATP formation was neither sensitive to ionophores and uncouplers, nor to dicyclohexyl carbodiimide, but depended on closed vesicles. Both ATPase activity (up to 2 micromol per min and mg protein) as well as ATP formation (up to 0.4 micromol per min and mg membrane protein) were highest at 100 degrees C. A P/e2 ratio of close to one can be estimated for sulfur respiration with hydrogen. In addition to ATP, autoradiographic detection revealed the formation of high quantities of (33)P(i)-labeled ADP and of another compound not identified so far.
Collapse
Affiliation(s)
- R Dirmeier
- Universität Regensburg, Lehrstuhl für Mikrobiologie, Universitätsstrasse 31, 93053, Regensburg, Germany
| | | | | |
Collapse
|
5
|
Abstract
Archaea are forming one of the three kingdoms defining the universal phylogenetic tree of living organisms. Within itself this kingdom is heterogenous regarding the mechanisms for deriving energy from the environment for support of cellular functions. These comprise fermentative and chemolithotrophic pathways as well as light driven and respiratory energy conservation. Due to their extreme growth conditions access to the molecular machineries of energy transduction in archaea can be experimentally limited. Among the aerobic, extreme thermoacidophilic archaea, the genus Sulfolobus has been studied in greater detail than many others and provides a comprehensive picture of bioenergetics on the level of substrate metabolism, formation and utilization of high energy phosphate bonds, and primary energy conservation in respiratory electron transport. A number of novel metabolic reactions as well as unusual structures of respiratory enzyme complexes have been detected. Since their genomic organization and many other primary structures could be determined, these studies shed light on the evolution of various bioenergetic modules. It is the aim of this comprehensive review to bring the different aspects of Sulfolobus bioenergetics into focus as a representative example of, and point of comparison for closely related, aerobic archaea.
Collapse
Affiliation(s)
- G Schäfer
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| |
Collapse
|
6
|
Hilario E, Gogarten JP. The V-ATPase A subunit gene (vma-1) from Giardia lamblia. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1238:94-8. [PMID: 7654757 DOI: 10.1016/0005-2736(95)00130-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sequence of the gene encoding the A subunit of the vacuolar type ATPase from Giardia lamblia is reported. Comparison of the encoded protein with the homologous subunits of eukaryotic and archaebacterial ATPases reveals high levels of similarity throughout the sequence (e.g., overall 49.1 and 44.6% identity to the homologous subunit from carrot and Halobacterium, respectively). An exception are three regions which are unique to the Giardia subunit. The largest of these regions contains motifs characteristic for eukaryotic spliceosomal introns; however, comparison to the cDNA shows that this region is also present in the mRNA.
Collapse
Affiliation(s)
- E Hilario
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044, USA
| | | |
Collapse
|
7
|
Sugiyama Y, Yamada N, Mukohata Y. The light-driven proton pump, cruxrhodopsin-2 in Haloarcula sp. arg-2 (bR+, hR-), and its coupled ATP formation. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:287-92. [PMID: 7803445 DOI: 10.1016/0005-2728(94)90047-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Haloarcula sp. arg-2, a natural bacterial isolate from Andes heights, has a light-driven proton pump but not a light-driven anion pump. We have cloned and sequenced the gene encoding for the proton pump which has been named cruxrhodopsin-2. The gene consists of 768 bp encoding 255 amino acids with a molecular mass of 27,544 Da. The deduced amino acid sequence of cruxrhodopsin-2 is 77%, 50%, 48% and 48% identical to those of cruxrhodopsin-1, bacteriorhodopsin, archaerhodopsin-1 and archaerhodopsin-2, respectively. The charged amino acids important for the proton pump function were conserved among all these molecules. Cruxrhodopsin-2 accounted for 0.05 nmol/mg protein in arg-2, which was 20-30-fold less than the proportion of bacteriorhodopsin in Halobacterium salinarium R1M1. In contrast to R1M1, under anaerobic conditions, arg-2 showed light-induced proton extrusion concomitant with an increase in ATP level without transient proton uptake. Dicyclohexylcarbodiimide enhanced the rate and extent of proton extrusion and inhibited ATP formation in the light. The apparent stoichiometry of H+/ATP was estimated to be more than three in this natural bR+hR- strain.
Collapse
Affiliation(s)
- Y Sugiyama
- Department of Biology, School of Science, Nagoya University, Japan
| | | | | |
Collapse
|