1
|
Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022; 117:1. [PMID: 35024969 PMCID: PMC8758654 DOI: 10.1007/s00395-022-00909-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023]
Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
Collapse
Affiliation(s)
- Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
2
|
Abstract
Unlike acute myocardial infarction with reperfusion, in which infarct size is the end point reflecting irreversible injury, myocardial stunning and hibernation result from reversible myocardial ischaemia-reperfusion injury, and contractile dysfunction is the obvious end point. Stunned myocardium is characterized by a disproportionately long-lasting, yet fully reversible, contractile dysfunction that follows brief bouts of myocardial ischaemia. Reperfusion precipitates a burst of reactive oxygen species formation and alterations in excitation-contraction coupling, which interact and cause the contractile dysfunction. Hibernating myocardium is characterized by reduced regional contractile function and blood flow, which both recover after reperfusion or revascularization. Short-term myocardial hibernation is an adaptation of contractile function to the reduced blood flow such that energy and substrate metabolism recover during the ongoing ischaemia. Chronic myocardial hibernation is characterized by severe morphological alterations and altered expression of metabolic and pro-survival proteins. Myocardial stunning is observed clinically and must be recognized but is rarely haemodynamically compromising and does not require treatment. Myocardial hibernation is clinically identified with the use of imaging techniques, and the myocardium recovers after revascularization. Several trials in the past two decades have challenged the superiority of revascularization over medical therapy for symptomatic relief and prognosis in patients with chronic coronary syndromes. A better understanding of the pathophysiology of myocardial stunning and hibernation is important for a more precise indication of revascularization and its consequences. Therefore, this Review summarizes the current knowledge of the pathophysiology of these characteristic reperfusion phenomena and highlights their clinical implications.
Collapse
|
3
|
Bravo C, Kudej RK, Yuan C, Yoon S, Ge H, Park JY, Tian B, Stanley WC, Vatner SF, Vatner DE, Yan L. Metabolomic analysis of two different models of delayed preconditioning. J Mol Cell Cardiol 2012; 55:19-26. [PMID: 23127662 DOI: 10.1016/j.yjmcc.2012.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/13/2012] [Accepted: 10/14/2012] [Indexed: 01/17/2023]
Abstract
Recently we described an ischemic preconditioning induced by repetitive coronary stenosis, which is induced by 6 episodes of non-lethal ischemia over 3 days, and which also resembles the hibernating myocardium phenotype. When compared with traditional second window of ischemic preconditioning using cDNA microarrays, many genes which differed in the repetitive coronary stenosis appeared targeted to metabolism. Accordingly, the goal of this study was to provide a more in depth analysis of changes in metabolism in the different models of delayed preconditioning, i.e., second window and repetitive coronary stenosis. This was accomplished using a metabolomic approach based on liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques. Myocardial samples from the ischemic section of porcine hearts subjected to both models of late preconditioning were compared against sham controls. Interestingly, although both models involve delayed preconditioning, their metabolic signatures were radically different; of the total number of metabolites that changed in both models (135 metabolites) only 7 changed in both models, and significantly more, p<0.01, were altered in the repetitive coronary stenosis (40%) than in the second window (8.1%). The most significant changes observed were in energy metabolism, e.g., phosphocreatine was increased 4 fold and creatine kinase activity increased by 27.2%, a pattern opposite from heart failure, suggesting that the repetitive coronary stenosis and potentially hibernating myocardium have enhanced stress resistance capabilities. The improved energy metabolism could also be a key mechanism contributing to the cardioprotection observed in the repetitive coronary stenosis and in hibernating myocardium. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Claudio Bravo
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Grover S, Srinivasan G, Selvanayagam JB. Evaluation of myocardial viability with cardiac magnetic resonance imaging. Prog Cardiovasc Dis 2011; 54:204-14. [PMID: 22014488 DOI: 10.1016/j.pcad.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Assessment of myocardial viability is of clinical and scientific significance. Traditionally, the detection of myocardial viability (either stunning or hibernation) has been used in aiding diagnosis before revascularization, especially in high-risk patients. There is a considerable body of observational evidence showing substantial improvement after revascularization in patients with significant left ventricular dysfunction and myocardial viability. Recent randomized evidence has questioned the benefit of viability testing but must be interpreted with caution. Dobutamine stress echocardiography, nuclear imaging, and cardiovascular magnetic resonance are the mainstays of viability testing and provide information on contractile function, cellular metabolism, and myocardial fibrosis, respectively. Larger, multicenter trials with outcome data are needed to define the nature of viability testing and, particularly, cardiovascular magnetic resonance in moderate-to-severe ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Suchi Grover
- Department of Cardiovascular Medicine, Flinders Medical Centre, Australia
| | | | | |
Collapse
|
5
|
Abstract
Although myocardial ischemia was once thought to result in irreversible cellular damage, it is now demonstrated that in cardiac tissue, submitted to the stress of oxygen and substrate deprivation, endogenous mechanisms of cell survival may be activated. These molecular mechanisms result in physiological conditions of adaptation to ischemia, known as myocardial stunning and hibernation. These conditions result from a switch in gene and protein expression, which sustains cardiac cell survival in a context of oxygen deprivation and during the stress of reperfusion. The pattern of cell survival elicited by ischemia in myocardial stunning or hibernation results in the activation of cytoprotective mechanisms that will protect the heart against further ischemic damage, a condition referred to as ischemic preconditioning. The basic mechanisms underlying stunning and hibernation are still a matter of intense research, which includes the discovery and characterization of novel survival genes not described in the heart before, or the unraveling of new cellular processes, such as autophagy. Understanding how the molecular adaptation of the cardiac myocyte during stress sustains its survival in these conditions therefore might help defining novel mechanisms of endogenous myocardial salvage, in order to expand the conditions of maintained cellular viability and functional salvage of the ischemic myocardium.
Collapse
Affiliation(s)
- Christophe Depre
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Street, MSB G-609, Newark, NJ 07103, USA
| | | |
Collapse
|
6
|
Abstract
Contractile reserve during submaximal beta-adrenergic stimulation is attenuated in patients and swine with hibernating myocardium. We tested the hypothesis that this arises as a regional adaptive response in beta-adrenergic adenylyl cyclase coupling. Pigs (n=8) were studied 3 months after instrumentation with a left anterior descending artery (LAD) stenosis when flow (LAD, 0.7+/-0.2 versus 1.2+/-0.1 mL/min per gram in normal remote; P<0.05) and wall thickening (LAD, 15.5 [corrected]+/-3.2% versus 40.0+/-5.5% in remote; P<0.05) were reduced in the absence of infarction. Whereas basal cAMP production was normal (LAD, 87+/-18 versus 91+/-19 pmol/mg per minute; P=NS), responses to isoproterenol were blunted (LAD, 83+/-6 versus 146+/-25 pmol/mg per minute in remote; P<0.05). beta-receptor density and subtype were unchanged, but there was a reduction in the number of high-affinity binding sites (LAD, 40+/-4% versus 53+/-7% in normal remote; P<0.05). The Gialpha2/Gsalpha ratio increased (LAD, 1.8+/-0.3 versus 0.99+/-0.3 in remote myocardium; P<0.05), although GppNHp-stimulated cAMP production was equivocally reduced. Forskolin responses were unchanged and similar to shams. These data indicate regional attenuation of beta-receptor adenylyl cyclase signaling in hibernating myocardium. This blunts the local contractile response to beta-adrenergic stimulation and may serve to protect against a myocardial supply/demand imbalance when external determinants of myocardial workload increase during sympathetic activation.
Collapse
Affiliation(s)
- Vijay S Iyer
- Veterans Affairs Western New York Health Care System, Buffalo, NY, USA
| | | |
Collapse
|
7
|
Depre C, Vatner SF. Mechanisms of Cell Survival in Myocardial Hibernation. Trends Cardiovasc Med 2005; 15:101-10. [PMID: 16039970 DOI: 10.1016/j.tcm.2005.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/25/2005] [Accepted: 04/27/2005] [Indexed: 11/30/2022]
Abstract
Myocardial hibernation represents a condition of regional ventricular dysfunction in patients with chronic coronary artery disease, which reverses gradually after revascularization. The precise mechanism mediating the regional dysfunction is still debated. One hypothesis suggests that chronic hypoperfusion results in a self-protecting downregulation in myocardial function and metabolism to match the decreased oxygen supply. An alternative hypothesis suggests that the myocardium is subject to repetitive episodes of ischemic dysfunction resulting from an imbalance between myocardial metabolic demand and supply that eventually creates a sustained depression of contractility. It is generally agreed that hibernating myocardium is submitted repeatedly to ischemic stress, and therefore one question persists: how do myocytes survive in the setting of chronic ischemia? The hallmark of hibernating myocardium is a maintained viability of the dysfunctional myocardium which relies on an increased uptake of glucose. We propose that, in addition to this metabolic adjustment, there must be molecular switches that confer resistance to ischemia in hibernating myocardium. Such mechanisms include the activation of a genomic program of cell survival as well as autophagy. These protective mechanisms are induced by ischemia and remain activated chronically as long as either sustained or intermittent ischemia persists.
Collapse
Affiliation(s)
- Christophe Depre
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry New Jersey, New Jersey Medical School, Newark, 07103, USA
| | | |
Collapse
|
8
|
Abstract
The pathophysiology of myocardial hibernation is characterized as a situation of reduced regional contractile function distal to a coronary artery stenosis that recovers after removal of the coronary stenosis. A subacute "downregulation" of contractile function in response to reduced regional myocardial blood flow exists, which normalizes regional energy and substrate metabolism but does not persist for more than 12-24 h. Chronic hibernation develops in response to one or more episodes of myocardial ischemia-reperfusion, possibly progressing from repetitive stunning with normal blood flow to hibernation with reduced blood flow. An upregulation of a protective gene program is seen in hibernating myocardium, putting it into the context of preconditioning. The morphology of hibernating myocardium is characterized by both adaptive and degenerative features.
Collapse
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
9
|
Jerosch-Herold M, Hu X, Murthy NS, Seethamraju RT. Time delay for arrival of MR contrast agent in collateral-dependent myocardium. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:881-890. [PMID: 15250640 DOI: 10.1109/tmi.2004.827969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An analysis of the kinetics of myocardial contrast enhancement is an important component of myocardial perfusion studies. The contrast enhancement can be modeled by a linear time-invariant system, and the myocardial impulse response, calculated by deconvolution of the measured tissue response with an arterial input, gives a direct estimate of myocardial blood flow. In this paper, we analyze the effects of delays in the contrast enhancement, that occur in collateral-dependent myocardium, where the tracer reaches the tissue region only through branches from other coronary arteries that form natural bypass vessels. We investigate how the delayed arrival of tracer alters the myocardial impulse response. Model-independent deconvolution is applied to determine the lag between arterial input and tissue enhancement. Experimental data in a porcine model of collateral development indicate that the delayed arrival of an injected tracer, measured at rest, is a useful marker to identify collateral-dependent myocardium, and predict its flow capacitance.
Collapse
|
10
|
Hughes GC, Post MJ, Simons M, Annex BH. Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J Appl Physiol (1985) 2003; 94:1689-701. [PMID: 12679343 DOI: 10.1152/japplphysiol.00465.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
"Therapeutic angiogenesis" describes an emerging field of cardiovascular medicine whereby new blood vessels are induced to grow to supply oxygen and nutrients to ischemic cardiac or skeletal muscle. Various methods of producing therapeutic angiogenesis have been employed, including mechanical means, gene therapy, and the use of growth factors, among others. The use of appropriate large-animal models is essential if these therapies are to be critically evaluated in a preclinical setting before their use in humans, yet little has been written comparing the various available models. Over the past decade, swine have been increasingly used in studies of chronic ischemia because of their numerous similarities to humans, including minimal preexisting coronary collaterals as well as similar coronary anatomy and physiology. Consequently, this review describes the most commonly used swine models of chronic myocardial ischemia with special attention to regional myocardial blood flow and function and critically evaluates the strengths and weaknesses of each model in terms of utility for preclinical trials of angiogenic therapies.
Collapse
Affiliation(s)
- G Chad Hughes
- Division of Cardiovascular Surgery, Department of Surgery, Duke University Medical Center; Section of Cardiology, Lebanon, New Hampshire 03756, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Myocardial stunning is defined as the prolonged contractile dysfunction following an ischemic episode that does not result in necrosis, which also occurs in patients with coronary artery disease. There is also evidence to consider myocardial stunning as a fundamental component of hibernating myocardium. Various experimental approaches (from a brief episode to prolonged partial ischemia) and animal models (from rodents to large mammals) have been developed to investigate the pathogenesis of myocardial stunning. Three hypotheses to explain the mechanism, i.e. oxygen radical, Troponin I degradation, and Ca(2+), have been proposed. The first was tested primarily using large mammalian models, whereas the others were tested primarily using rodent models. Recently, the Ca(2+) handling hyothesis has been tested in a large mammalian swine model of myocardial stunning, in which both Ca(2+) and transients and L-type Ca(2+) current density were decreased. Relaxation function and phospholamban phosphorylation are also radically different in large mammalian and rodent models. In addition, troponin I degradation, which was identified as the mechanism of stunning in rodent models, was not found in stunned swine myocardium. Interestingly, the large mammalian model demonstrates that stunning elicits broad changes in gene and protein regulation, some of which have not been observed in the heart previously. The overall genomic adaptation upregulates the expression of survival genes that prevent irreversible damage. Pursuing these new concepts derived from large mammalian models of ischemia/reperfusion will provide more comprehensive mechanistic information underlying myocardial stunning and will serve to devise new therapeutic modalities for patients.
Collapse
Affiliation(s)
- Song-Jung Kim
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
12
|
Hughes GC, Landolfo CK, Yin B, DeGrado TR, Coleman RE, Landolfo KP, Lowe JE. Is chronically dysfunctional yet viable myocardium distal to a severe coronary stenosis hypoperfused? Ann Thorac Surg 2001; 72:163-8. [PMID: 11465172 DOI: 10.1016/s0003-4975(01)02685-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Controversy exists regarding the perfusion status of chronically dysfunctional yet viable myocardium. Studies investigating the pathophysiology of this condition have reached different conclusions, with some suggesting that myocardial blood flow (MBF) in these regions is normal at rest with regional dysfunction resulting from repetitive stress-induced ischemia (stunned myocardium), whereas others have proposed that MBF is chronically reduced at rest (hibernating myocardium). However, adequately powered experimental studies investigating this question in an appropriate animal model using clinically available techniques have not been performed. Based on the mixed results of prior studies, we hypothesized that these chronically dysfunctional yet viable regions may actually represent a mixture of hibernation and stunning. Consequently, the purpose of this study was to quantitatively determine the distribution of MBF in left ventricular regions with chronically impaired resting function but preserved viability in a large population of animals with single-vessel coronary stenosis in an attempt to further elucidate the mechanism(s) responsible for chronic, reversible myocardial dysfunction. METHODS Fifty-two adult mini-swine with 90% proximal left circumflex (LCx) stenosis underwent dynamic positron emission tomography (PET) with 13N-ammonia and 18F-fluorodeoxyglucose and dobutamine stress echocardiography (DSE) (5 to 40 microg/kg/min) 1 month after stenosis creation. Values of MBF and FDG uptake by PET and wall motion score index (WMSI) by DSE were compared using a standard 16-segment model. RESULTS Of 312 possible LCx segments seen on PET, 303 (97.1%) were visualized by DSE. Of the 303 LCx segments, 279 (92.1%) had rest dysfunction (WMSI > or = 2) by DSE. One hundred eighty-two segments (60.1%) had decreased (< 85% reference) MBF at rest with preserved to increased (> 60% reference) FDG uptake and were classified as hibernating. Ninety-two segments (30.4%) had preserved MBF (> or = 85% reference) and were classified as stunned. Five segments (1.7%) with reduced (< or = 60% reference) FDG uptake by PET and akinesis or dyskinesis at rest (WMSI > or = 3) and no contractile reserve were considered infarcted. Hibernating segments had significantly higher FDG uptake at rest (360.7+/-48.3 vs 212.3+/-17.7% septal values; p < 0.001) than stunned segments consistent with greater resting ischemia. Likewise, mean rest WMSI was also worse in hibernating versus stunned segments (2.35+/-0.04 vs 2.13+/-0.04; p < 0.001). There was no difference in the percentage of hibernating versus stunned segments exhibiting contractile reserve during dobutamine infusion (55.5 vs 63.7%; p = 0.4), indicating similar degrees of viability. CONCLUSIONS Myocardial hibernation and stunning appear to frequently coexist in regions served by a stenotic coronary vessel. Hibernating regions appear to have greater resting ischemia based on higher values of FDG uptake and greater resting dysfunction. Reversible left ventricular dysfunction in the setting of chronic coronary artery disease is likely due to a combination of these two mechanisms.
Collapse
Affiliation(s)
- G C Hughes
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Szilárd M, Mesotten L, Maes A, Liu X, Nuyts J, Bormans G, De Groot T, Pislaru S, Huang Y, Qiang B, Dispersyn GD, Borgers M, Flameng W, Van De Werf F, Mortelmans L, De Scheerder I. A nonsurgical porcine model of left ventricular dysfunction. Validation of myocardial viability using dobutamine stress echocardiography and positron emission tomography. INTERNATIONAL JOURNAL OF CARDIOVASCULAR INTERVENTIONS 2000; 3:111-120. [PMID: 12470378 DOI: 10.1080/14628840050516208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND: Although several short-term animal models of stunning and hibernation have been studied extensively, it has been difficult to produce a consistent animal model of chronic hibernation. The aim of the present study was to develop a nonsurgical porcine stent model of coronary stenosis in order to investigate the relationship between chronic dysfunctional myocardium and viability using 2D-echo, dobutamine stress echo (DSE) and positron emission tomography (PET). METHODS AND RESULTS: Focal progressive coronary stenosis was induced by implantation of an oversized stent in the left anterior descending (LAD) and/or circumflex (LCX) coronary artery in a total of 115 pigs, according to various experimental protocols: copper stent in the LAD (group I, n = 5); noncoated stainless steel stent in the LAD combined with balloon overstretch (group II, n = 7); poly(organo)phosphazene-coated stent in the LAD (group III, n = 77); and poly(organo)phosphazene-coated stent in both the LAD and the LCX (group IV, n = 26). Occurrence of left ventricular dysfunction was evaluated weekly by 2D-echo. At the time of left ventricular dysfunction the presence of viable myocardium within the dysfunctional region was investigated with DSE and PET, and confirmed by histology. The degree of coronary artery stenosis was measured by quantitative coronary angiography and morphometry. Severe coronary artery stenosis in the presence of dysfunctional, but viable, myocardium was induced in groups III and IV (47% and 11% of the animals, respectively). CONCLUSIONS: The authors developed a nonsurgical porcine stent model of progressive coronary stenosis using an oversized polymer-coated stent resulting in chronically decreased myocardial function, with residual inotropic reserve and viable myocardium. This condition may arise from repetitive periods of ischemia, or from sustained hypoperfusion, or a combination of these processes eventually leading to myocardial hibernation.
Collapse
Affiliation(s)
- Monika Szilárd
- Laboratory for Experimental Cardiology, UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schwarz ER, Reffelmann T, Schoendube F, Hermanns B, Chakupurakal R, Doerge H, Schuetz T, Foresti M, Messmer BJ, Radke PW, Hanrath P. Hypoxic Hypoperfusion Fails to Induce Myocardial Hibernation in Anesthetized Swine. J Cardiovasc Pharmacol Ther 1999; 4:235-247. [PMID: 10684545 DOI: 10.1177/107424849900400405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Congenital origin of the left coronary artery from the pulmonary artery (ALCAPA) results in chronically dysfunctional myocardium with the partial ability to recover after revascularization. We attempted to establish an ALCAPA syndrome in anesthetized pigs for 24 hours and to compare it with stunned and infarcted myocardium. METHODS AND RESULTS: In group 1 (n = 12), a bypass graft was interposed between the pulmonary artery and the left anterior descending coronary artery (LAD). Reduction of flow in the LAD with gradual increases in flow from the pulmonary artery resulted in an incremental reduction of segment shortening (8.9 +/- 5.3% at 24 hours vs 26.6 +/- 10% at baseline, P <.005). In group 3 (n = 5), 2 cycles of 10-minute LAD occlusion resulted in decreased segment shortening with slow recovery (at 24 hours 18.7 +/- 1.3% vs 24.2 +/- 4% at baseline, segment shortening with slow recovery (at 24 hours 18.7 +/- 1.3% vs 24.2 +/- 4% at baseline, P <.05). In group 3 (n = 6), 1-hour LAD occlusion reduced segment shortening at 24 hours to 4.7 +/- 5.2% (P <.005 vs baseline). Histological analysis of the LAD territory revealed severe degeneration, myolysis, and alteration of the chromatin structure in group 1 comparable to ischemic cell death in group 3, whereas control areas and the LAD area in group 2 showed only minor structural alterations. Infarct size/risk area, as measured by tetrazolium staining, was 49.8 +/- 11.2% in group 1, 9.3 +/- 8.1% in group 2 (P <.005), and 60.3 +/- 9% in group 3. CONCLUSION: Hypoxic myocardial hypoperfusion from the pulmonary artery results in myocardial necrosis in anesthetized pigs. These findings are in contrast to the concept of myocardial hibernation in the ALCAPA syndrome because in this model, hypoxic hypoperfusion failed to induce adaptation to preserve myocardial structure.
Collapse
Affiliation(s)
- ER Schwarz
- Medical Clinic I, Institute of Pathology, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Decreased myocardial contraction occurs as a consequence of a reduction in blood flow. The concept of hibernation implies a downregulation of contractile function as an adaptation to a reduction in myocardial blood flow that serves to maintain myocardial integrity and viability during persistent ischemia. Unequivocal evidence for this concept exists in scenarios of myocardial ischemia that lasts for several hours, and sustained perfusion-contraction matching, recovery of energy and substrate metabolism, the potential for recruitment of inotropic reserve at the expense of metabolic recovery, and lack of necrosis are established criteria of short-term hibernation. The mechanisms of short-term hibernation, apart from reduced calcium responsiveness, are not clear at present. Experimental studies with chronic coronary stenosis lasting more than several hours have failed to continuously monitor flow and function. Nevertheless, a number of studies in chronic animal models and patients have demonstrated regional myocardial dysfunction at reduced resting blood flow that recovered upon reperfusion, consistent with chronic hibernation. Further studies are required to distinguish chronic hibernation from cumulative stunning. With a better understanding of the mechanisms underlying short-term hibernation, it is hoped that these adaptive responses can be recruited and reinforced to minimize the consequences of acute myocardial ischemia and delay impending infarction. Patients with chronic hibernation must be identified and undergo adequate reperfusion therapy.
Collapse
Affiliation(s)
- G Heusch
- Department of Pathophysiology, Centre of Internal Medicine, University of Essen, School of Medicine, Germany
| |
Collapse
|
16
|
Affiliation(s)
- W Wijns
- Cardiovascular Center, Onze Lieve Vrouw Ziekenhuis, Aalst, Belgium
| | | | | |
Collapse
|
17
|
Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF. Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res 1998; 82:1199-205. [PMID: 9633919 DOI: 10.1161/01.res.82.11.1199] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several models purported to represent hibernating myocardium involve a coronary stenosis (CS) to reduce blood flow (BF) and function without eliciting necrosis in anesthetized pigs. The goal of the present study was to determine whether sustained moderate reduction in coronary BF in conscious pigs induced hibernating myocardium, ie, perfusion-contraction matching with no necrosis. These experiments were conducted in conscious pigs chronically instrumented with a coronary artery BF probe and hydraulic occluder, left ventricular (LV) pressure gauge, and wall thickening (WT) crystals in the potentially ischemic and nonischemic zones. The hydraulic occluder was inflated to induce a stable 41+/-4% reduction in BF for 24 hours. Ischemic zone systolic WT fell initially with CS and then continued to decline during the period of CS even though blood flow did not change further, suggesting the induction of myocardial stunning. At 2 days after release of CS, WT was still depressed by 48+/-15%. Assessment of necrosis by histology or triphenyltetrazolium chloride showed 40+/-5% multifocal patchy necrosis interspersed with normal tissue involving the inner one third to one half of the ventricular wall. Regional myocardial BF (radioactive microsphere technique) was assessed by dividing the entire LV into an average of 488+/-59 pieces and examining the spatial distribution of BF within the area at risk (AAR). BF in the samples in the area of patchy necrosis was reduced (-66+/-4% from a baseline of 1.55+/-0.27 mL x min(-1) x g(-1)), whereas BF was maintained in samples in the AAR without necrosis (-2+/-7% from a baseline of 1.25+/-0.22 mL x min(-1) x g(-1)). These findings indicate that when hypoperfusion induced by CS in conscious pigs is sustained, the result is necrosis rather than hibernating myocardium. The remainder of the AAR, which lacked necrosis, might have been mistaken for hibernating myocardium had only histology been evaluated and BF not been measured and found to be at normal levels.
Collapse
Affiliation(s)
- R K Kudej
- Cardiovascular and Pulmonary Research Institute, Allegheny University of the Health Sciences, Pittsburgh, PA 15212, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation 1998; 97:1848-67. [PMID: 9603540 DOI: 10.1161/01.cir.97.18.1848] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R A Kloner
- Heart Institute, Good Samaritan Hospital, and University of Southern California, Los Angeles 90017, USA
| | | | | | | | | |
Collapse
|
19
|
Camici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J, Lammertsma AA, Liedtke AJ, Paternostro G, Vatner SF. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 1997; 96:3205-14. [PMID: 9386194 DOI: 10.1161/01.cir.96.9.3205] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P G Camici
- Medical Research Council-Cyclotron Unit and Royal Postgraduate Medical School, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|