1
|
Holden DT, Morato NM, Cooks RG. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. Proc Natl Acad Sci U S A 2022; 119:e2212642119. [PMID: 36191178 PMCID: PMC9586328 DOI: 10.1073/pnas.2212642119] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.
Collapse
Affiliation(s)
- Dylan T. Holden
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Nicolás M. Morato
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
2
|
Saroha B, Kumar A, Raman Maurya R, Lal M, Kumar S, Kumar Rajor H, Bahadur I, Singh Negi D. Adsorption of cysteine on metal(II) octacynaomolybdate(IV) at different pH values: Surface complexes characterization by FT-IR, SEM with EDXA, CHNS and Langmuir isotherm analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Baú JPT, Carneiro CEA, da Costa ACS, Valezi DF, di Mauro E, Pilau E, Zaia DAM. The Effect of Goethites on the Polymerization of Glycine and Alanine Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2022; 51:299-320. [PMID: 35064872 DOI: 10.1007/s11084-021-09618-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
After pre concentration of monomers, polymerization is the second most important step for molecular evolution. The formation of peptides is an important issue for prebiotic chemistry and consequently for the origin of life. In this work, goethite was synthesized by two different routes, named goethite-I and goethite-II. Although both samples are goethite, Far-FT-IR spectroscopy and EPR spectroscopy showed differences between them, and these differences had an effect on the polymerization of glycine and alanine. For the amino acid polymerization, three protocols were used, that resembled prebiotic Earth conditions: a) amino acid plus goethite were mixed and heated at 90 °C for 10 days in solid state, b) a wet impregnation of the amino acid in the goethite, with subsequent heating at 90 °C for 10 days in solid state, and c) 10 wet/dry cycles each one for 24 h at 90 °C. Experiments with glycine plus goethite-II, using protocols B and C, produced only Gly-Gly. In addition, for the C protocol the amount of Gly-Gly synthesized was 3 times higher than the amount of Ala-Ala. Goethite-I presented a decrease in the EPR signal, when it was submitted to the protocols with and without amino acids. It is probable the decrease in the intensity of the EPR signal was due to a decrease in the imperfections of the mineral. For all protocols the mixture of alanine plus goethite-I or goethite-II produced c(Ala-Ala). However, for wet/dry cycles, protocol C presented higher yields (p < 0.05). In addition, Ala-Ala was produced using protocols A and C. The c(Ala-Ala) formation fitted a zero-order kinetic equation model. The surface areas of goethite-I and goethite-II were 35 m2 g-1 and 37 m2 g-1, respectively. Thermal analysis indicated that the mineral changes the thermal behavior of the amino acids. The main reactions for the thermal decomposition of glycine were deamination and dehydration and for alanine was deamination.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Cristine E A Carneiro
- Centro das Ciências Exatas E Tecnologia, Universidade Federal Do Oeste da Bahia, 47810-059, Barreiras, BA, Brasil
| | | | - Daniel F Valezi
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo di Mauro
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo Pilau
- Departamento de Química-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brasil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil.
| |
Collapse
|
5
|
Barreiro-Lage D, Bolognesi P, Chiarinelli J, Richter R, Zettergren H, Stockett MH, Carlini L, Diaz-Tendero S, Avaldi L. "Smart Decomposition" of Cyclic Alanine-Alanine Dipeptide by VUV Radiation: A Seed for the Synthesis of Biologically Relevant Species. J Phys Chem Lett 2021; 12:7379-7386. [PMID: 34324354 DOI: 10.1021/acs.jpclett.1c01788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A combined experimental and theoretical study shows how the interaction of VUV radiation with cyclo-(alanine-alanine), one of the 2,5-diketopiperazines (DKPs), produces reactive oxazolidinone intermediates. The theoretical simulations reveal that the interaction of these intermediates with other neutral and charged fragments, released in the molecular decomposition, leads either to the reconstruction of the cyclic dipeptide or to the formation of longer linear peptide chains. These results may explain how DKPs could have, on one hand, survived hostile chemical environments and, on the other, provided the seed for amino acid polymerization. Shedding light on the mechanisms of production of such prebiotic building blocks is of paramount importance to understanding the abiotic synthesis of relevant biologically active compounds.
Collapse
Affiliation(s)
- Darío Barreiro-Lage
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paola Bolognesi
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Jacopo Chiarinelli
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Robert Richter
- Elettra Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - Mark H Stockett
- Department of Physics, Stockholm University, Se-10691 Stockholm, Sweden
| | - Laura Carlini
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Sergio Diaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lorenzo Avaldi
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| |
Collapse
|
6
|
A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.
Collapse
|
7
|
Schreiber A, Huber MC, Schiller SM. Prebiotic Protocell Model Based on Dynamic Protein Membranes Accommodating Anabolic Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9593-9610. [PMID: 31287709 DOI: 10.1021/acs.langmuir.9b00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The nature of the first prebiotic compartments and their possible minimal molecular composition is of great importance in the origin of life scenarios. Current protocell model membranes are proposed to be lipid-based. This paradigm has several shortcomings such as limited membrane stability of monoacyl lipid-based membranes (e.g., fatty acids), missing pathways to synthesize protocell membrane components (e.g., phospholipids) under early earth conditions, and the requirement for different classes of molecules for the formation of compartments and the catalysis of reactions. Amino acids on the other hand are known to arise and persist with remarkable abundance under early earth conditions since the fundamental Miller-Urey experiments. They were also postulated early to form protocellular structures, for example, proteinoid capsules. Here, we present a protocell model constituted by membranes assembled from amphiphilic proteins based on prebiotic amino acids. Self-assembled dynamic protein membrane-based compartments (PMBCs) are impressively stable and compatible with prevalent cellular membrane constituents forming protein-only or protein-lipid hybrid membranes. They can embed processes essential for extant living cells, such as enclosure of molecules, membrane fusion, phase separation, and complex biosynthetic elements from modern cells demonstrating "upward" compatibility. Our findings suggest that prebiotic PMBCs represent a new type of protocell as a possible ancestor of current lipid-based cells. The presented prebiotic PMBC model can be used to design artificial cells, important for the study of structural, catalytic, and evolutionary pathways related to the emergence of life.
Collapse
Affiliation(s)
- Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA) , Albert-Ludwigs-Universität Freiburg , 7 Habsburgerstrasse 49 , D-79104 Freiburg , Germany
- Faculty of Biology , University of Freiburg , Schänzlestrasse 1 , D-79104 Freiburg , Germany
| | - Matthias C Huber
- Zentrum für Biosystemanalyse (ZBSA) , Albert-Ludwigs-Universität Freiburg , 7 Habsburgerstrasse 49 , D-79104 Freiburg , Germany
- Faculty of Biology , University of Freiburg , Schänzlestrasse 1 , D-79104 Freiburg , Germany
| | - Stefan M Schiller
- Zentrum für Biosystemanalyse (ZBSA) , Albert-Ludwigs-Universität Freiburg , 7 Habsburgerstrasse 49 , D-79104 Freiburg , Germany
- Faculty of Biology , University of Freiburg , Schänzlestrasse 1 , D-79104 Freiburg , Germany
- BIOSS Centre for Biological Signalling Studies , University of Freiburg , Schänzlestrasse 18 , D-79104 Freiburg , Germany
- IMTEK Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , D-79110 Freiburg , Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies , University of Freiburg , Georges-Köhler-Allee 105 , D-79110 Freiburg , Germany
| |
Collapse
|
8
|
Iqubal MA, Sharma R, Jheeta S, Kamaluddin. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario. Life (Basel) 2017; 7:E15. [PMID: 28346388 PMCID: PMC5492137 DOI: 10.3390/life7020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 11/17/2022] Open
Abstract
The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.
Collapse
Affiliation(s)
- Md Asif Iqubal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Rachana Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Sohan Jheeta
- Network of Researchers on Horizontal Gene Transfer and Last Universal, Common Ancestor Leeds, Leeds LS7 3RB, UK.
| | - Kamaluddin
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|
9
|
|
10
|
Blanco C, Crusats J, El-Hachemi Z, Moyano A, Hochberg D, Ribó JM. Spontaneous Emergence of Chirality in the Limited Enantioselectivity Model: Autocatalytic Cycle Driven by an External Reagent. Chemphyschem 2013; 14:2432-40. [DOI: 10.1002/cphc.201300350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/09/2022]
|
11
|
Lambert JF, Jaber M, Georgelin T, Stievano L. A comparative study of the catalysis of peptide bond formation by oxide surfaces. Phys Chem Chem Phys 2013; 15:13371-80. [DOI: 10.1039/c3cp51282g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Fraser DG, Fitz D, Jakschitz T, Rode BM. Selective adsorption and chiral amplification of amino acids in vermiculite clay-implications for the origin of biochirality. Phys Chem Chem Phys 2010; 13:831-8. [PMID: 21031170 DOI: 10.1039/c0cp01388a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH(3)Cl ions forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. n-Propyl NH(3)Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligomerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.
Collapse
Affiliation(s)
- Donald G Fraser
- Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK.
| | | | | | | |
Collapse
|
14
|
Kiliaris P, Papaspyrides C, Pfaendner R. Influence of accelerated aging on clay-reinforced polyamide 6. Polym Degrad Stab 2009. [DOI: 10.1016/j.polymdegradstab.2008.11.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Lambert JF. Adsorption and polymerization of amino acids on mineral surfaces: a review. ORIGINS LIFE EVOL B 2008; 38:211-42. [PMID: 18344011 DOI: 10.1007/s11084-008-9128-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The present paper offers a review of recent (post-1980) work on amino acid adsorption and thermal reactivity on oxide and sulfide minerals. This review is performed in the general frame of evaluating Bernal's hypothesis of prebiotic polymerization in the adsorbed state, but written from a surface scientist's point of view. After a general discussion of the thermodynamics of the problem and exactly what effects surfaces should have to make adsorbed-state polymerization a viable scenario, we examine some practical difficulties in experimental design and their bearing on the conclusions that can be drawn from extant works, including the relevance of the various available characterization techniques. We then present the state of the art concerning the mechanisms of the interactions of amino acids with mineral surfaces, including results from prebiotic chemistry-oriented studies, but also from several different fields of application, and discuss the likely consequences for adsorption selectivities. Finally, we briefly summarize the data concerning thermally activated amide bond formation of adsorbed amino acids without activating agents. The reality of the phenomenon is established beyond any doubt, but our understanding of its mechanism and therefore of its prebiotic potential is very fragmentary. The review concludes with a discussion of future work needed to fill the most conspicuous gaps in our knowledge of amino acids/mineral surfaces systems and their reactivity.
Collapse
Affiliation(s)
- Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR CNRS 7609, UPMC Univ Paris 06 and CNRS, Paris, France.
| |
Collapse
|
16
|
Li F, Fitz D, Fraser DG, Rode BM. Methionine peptide formation under primordial earth conditions. J Inorg Biochem 2007; 102:1212-7. [PMID: 18262274 DOI: 10.1016/j.jinorgbio.2007.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/08/2007] [Accepted: 12/15/2007] [Indexed: 11/25/2022]
Abstract
According to recent research on the origin of life it seems more and more likely that amino acids and peptides were among the first biomolecules formed on earth and that a peptide/protein world was thus a key starting point in evolution towards life. Salt-induced Peptide Formation (SIPF) has repeatedly been shown to be the most universal and plausible peptide-forming reaction currently known under prebiotic conditions and forms peptides from amino acids with the help of copper ions and sodium chloride. In this paper we present experimental results for salt-induced peptide formation from methionine. This is the first time that a sulphur-containing amino acid was investigated in this reaction. The possible catalytic effects of glycine and L-histidine in this reaction were also investigated and a possible distinction between the L- and D-forms of methionine was studied as well.
Collapse
Affiliation(s)
- Feng Li
- Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
17
|
Abstract
Numerous hypotheses about how life on earth could have started can be found in the literature. In this article, we give an overview about the most widespread ones and try to point out which of them might have occurred on the primordial earth with highest probability from a chemical point of view. The idea that a very early stage of life was the "RNA world" encounters crucial problems concerning the formation of its building blocks and their stability in a prebiotic environment. Instead, it seems much more likely that a "peptide world" originated first and that RNA and DNA took up their part at a much later stage. It is shown that amino acids and peptides can be easily formed in a realistic primordial scenario and that these biomolecules can start chemical evolution without the help of RNA. The origin of biohomochirality seems strongly related to the most probable formation of the first peptides via the salt-induced peptide formation (SIPF) reaction.
Collapse
|
18
|
Davis RD, Gilman JW, VanderHart DL. Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier. Polym Degrad Stab 2003. [DOI: 10.1016/s0141-3910(02)00263-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
|
20
|
Abstract
Considering the state-of-the-art views of the geochemical conditions of the primitive earth, it seems most likely that peptides were produced ahead of all other oligomer precursors of biomolecules. Among all the reactions proposed so far for the formation of peptides under primordial earth conditions, the salt-induced peptide formation reaction in connection with adsorption processes on clay minerals would appear to be the simplest and most universal mechanism known to date. The properties of this reaction greatly favor the formation of biologically relevant peptides within a wide variation of environmental conditions such as temperature, pH, and the presence of inorganic compounds. The reaction-inherent preferences of certain peptide linkages make the argument of 'statistical impossibility' of the evolutionary formation of the 'right' peptides and proteins rather insignificant. Indeed, the fact that these sequences are reflected in the preferential sequences of membrane proteins of archaebacteria and prokaryonta distinctly indicates the relevance of this reaction for chemical peptide evolution. On the basis of these results and the recent findings of self-replicating peptides, some ideas have been developed as to the first steps leading to life on earth.
Collapse
Affiliation(s)
- B M Rode
- Department of Theoretical Chemistry, Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria.
| |
Collapse
|
21
|
|
22
|
Bujdák J, Le Son H, Yongyai Y, Rode BM. The effect of reaction conditions on montmorillonite-catalysed peptide formation. Catal Letters 1996. [DOI: 10.1007/bf00807765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
|
24
|
Bujdák J, Eder A, Yongyai Y, Faybíková K, Rode BM. Investigation on the mechanism of peptide chain prolongation on montmorillonite. J Inorg Biochem 1996; 61:69-78. [PMID: 8558134 DOI: 10.1016/0162-0134(95)00035-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experiments with reduced-charge montmorillonites with gradually collapsed interlayer space prove that peptide formation processes occur mainly at the edges of the clay mineral. Activation of peptides and amino acids and the intermediate formation of cyclic anhydrides are found to be the two dominant processes determining the formation of higher peptides on the mineral surface.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|