1
|
Roheel A, Khan A, Anwar F, Ullah H, Rehman AU, Ullah N, Akhtar MF, Khan MI, Yaseen N. Evaluation of anti-tumor activity of molybdenum disulfide nanoflowers per se and in combination with berberine against mammary gland cancer in rats. JOURNAL OF NANOPARTICLE RESEARCH 2024; 26:240. [DOI: 10.1007/s11051-024-06153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 01/28/2025]
|
2
|
Marshansky V. Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:702-719. [PMID: 36171652 DOI: 10.1134/s000629792208003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
This review discusses the history of discovery and study of the operation of the two rotary ion-translocating ATPase nano-motors: (i) F-ATPase/synthase (holocomplex F1FO) of mitochondria/bacteria and (ii) eukaryotic V-ATPase (holocomplex V1VO). Vacuolar adenosine triphosphatase (V-ATPase) is a transmembrane multisubunit complex found in all eukaryotes from yeast to humans. It is structurally and functionally similar to the F-ATPase/synthase of mitochondria/bacteria and the A-ATPase/synthase of archaebacteria, which indicates a common evolutionary origin of the rotary ion-translocating nano-motors built into cell membranes and invented by Nature billions of years ago. Previously we have published several reviews on this topic with appropriate citations of our original research. This review is focused on the historical analysis of the discovery and study of transmembrane rotary ion-translocating ATPase nano-motors functioning in bacteria, eukaryotic cells and mitochondria of animals.
Collapse
|
3
|
Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1323028. [PMID: 32963690 PMCID: PMC7499269 DOI: 10.1155/2020/1323028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions caused by oxidative stress are currently regarded as the main cause of aging. Accumulation of mutations and deletions of mtDNA is a hallmark of aging. So far, however, there is no evidence that most studied oxygen radicals are directly responsible for mutations of mtDNA. Oxidative damages to cardiolipin (CL) and phosphatidylethanolamine (PEA) are also hallmarks of oxidative stress, but the mechanisms of their damage remain obscure. CL is the only phospholipid present almost exclusively in the inner mitochondrial membrane (IMM) where it is responsible, together with PEA, for the maintenance of the superstructures of oxidative phosphorylation enzymes. CL has negative charges at the headgroups and due to specific localization at the negative curves of the IMM, it creates areas with the strong negative charge where local pH may be several units lower than in the surrounding bulk phases. At these sites with the higher acidity, the chance of protonation of the superoxide radical (O2•), generated by the respiratory chain, is much higher with the formation of the highly reactive hydrophobic perhydroxyl radical (HO2•). HO2• specifically reacts with the double bonds of polyunsaturated fatty acids (PUFA) initiating the isoprostane pathway of lipid peroxidation. Because HO2• is formed close to CL aggregates and PEA, it causes peroxidation of the linoleic acid in CL and also damages PEA. This causes disruption of the structural and functional integrity of the respirosomes and ATP synthase. We provide evidence that in elderly individuals with metabolic syndrome (MetS), fatty acids become the major substrates for production of ATP and this may increase several-fold generation of O2• and thus HO2•. We conclude that MetS accelerates aging and the mitochondrial dysfunctions are caused by the HO2•-induced direct oxidation of CL and the isoprostane pathway of lipid peroxidation (IPLP). The toxic products of IPLP damage not only PEA, but also mtDNA and OXPHOS proteins. This results in gradual disruption of the structural and functional integrity of mitochondria and cells.
Collapse
|
4
|
Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci 2020; 21:ijms21165598. [PMID: 32764295 PMCID: PMC7460667 DOI: 10.3390/ijms21165598] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
As an essential organelle in nucleated eukaryotic cells, mitochondria play a central role in energy metabolism, maintenance of redox balance, and regulation of apoptosis. Mitochondrial dysfunction, either due to the TCA cycle enzyme defects, mitochondrial DNA genetic mutations, defective mitochondrial electron transport chain, oxidative stress, or aberrant oncogene and tumor suppressor signaling, has been observed in a wide spectrum of human cancers. In this review, we summarize mitochondrial dysfunction induced by these alterations that promote human cancers.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Jianjia Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
5
|
Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 2011; 15:1517-30. [PMID: 21194353 PMCID: PMC3151425 DOI: 10.1089/ars.2010.3642] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/07/2010] [Accepted: 01/01/2011] [Indexed: 12/19/2022]
Abstract
Mitochondria are well known for their central roles in ATP production, calcium homeostasis, and heme and steroid biosynthesis. However, mitochondrial reactive oxygen species (ROS), including superoxide and hydrogen peroxide, once thought to be toxic byproducts of mitochondrial physiologic activities, have recently been recognized as important cell-signaling molecules in the vascular endothelium, where their production, conversion, and destruction are highly regulated. Mitochondrial reactive oxygen species appear to regulate important vascular homeostatic functions under basal conditions in a variety of vascular beds, where, in particular, they contribute to endothelium-dependent vasodilation. On exposure to cardiovascular risk factors, endothelial mitochondria produce excessive ROS in concert with other cellular ROS sources. Mitochondrial ROS, in this setting, act as important signaling molecules activating prothrombotic and proinflammatory pathways in the vascular endothelium, a process that initially manifests itself as endothelial dysfunction and, if persistent, may lead to the development of atherosclerotic plaques. This review concentrates on emerging appreciation of the importance of mitochondrial ROS as cell-signaling molecules in the vascular endothelium under both physiologic and pathophysiologic conditions. Future potential avenues of research in this field also are discussed.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Cardiovascular Medicine Division and Department of Pharmacology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | |
Collapse
|
6
|
Affiliation(s)
- Francesco Addabbo
- Department of Medicine and Pharmacology, Renal Research Institute, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
7
|
Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, Stelmashook EV, Vasileva AK, Arkhangelskaya AA, Khrjapenkova TG. The mitochondrion as janus bifrons. BIOCHEMISTRY (MOSCOW) 2008; 72:1115-26. [PMID: 18021069 DOI: 10.1134/s0006297907100094] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling function of mitochondria is considered with a special emphasis on their role in the regulation of redox status of the cell, possibly determining a number of pathologies including cancer and aging. The review summarizes the transport role of mitochondria in energy supply to all cellular compartments (mitochondria as an electric cable in the cell), the role of mitochondria in plastic metabolism of the cell including synthesis of heme, steroids, iron-sulfur clusters, and reactive oxygen and nitrogen species. Mitochondria also play an important role in the Ca(2+)-signaling and the regulation of apoptotic cell death. Knowledge of mechanisms responsible for apoptotic cell death is important for the strategy for prevention of unwanted degradation of postmitotic cells such as cardiomyocytes and neurons.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Thwaites DT, Anderson CMH. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 2007; 92:603-19. [PMID: 17468205 PMCID: PMC2803310 DOI: 10.1113/expphysiol.2005.029959] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The H(+)-electrochemical gradient was originally considered as a driving force for solute transport only across cellular membranes of bacteria, plants and yeast. However, in the mammalian small intestine, a H(+)-electrochemical gradient is present at the epithelial brush-border membrane in the form of an acid microclimate. Over recent years, a large number of H(+)-coupled cotransport mechanisms have been identified at the luminal membrane of the mammalian small intestine. These transporters are responsible for the initial stage in absorption of a remarkable variety of essential and non-essential nutrients and micronutrients, including protein digestion products (di/tripeptides and amino acids), vitamins, short-chain fatty acids and divalent metal ions. Proton-coupled cotransporters expressed at the mammalian small intestinal brush-border membrane include: the di/tripeptide transporter PepT1 (SLC15A1); the proton-coupled amino-acid transporter PAT1 (SLC36A1); the divalent metal transporter DMT1 (SLC11A2); the organic anion transporting polypeptide OATP2B1 (SLC02B1); the monocarboxylate transporter MCT1 (SLC16A1); the proton-coupled folate transporter PCFT (SLC46A1); the sodium-glucose linked cotransporter SGLT1 (SLC5A1); and the excitatory amino acid carrier EAAC1 (SLC1A1). Emerging research demonstrates that the optimal intestinal absorptive capacity of certain H(+)-coupled cotransporters (PepT1 and PAT1) is dependent upon function of the brush-border Na(+)-H(+) exchanger NHE3 (SLC9A3). The high oral bioavailability of a large number of pharmaceutical compounds results, in part, from absorptive transport via the same H(+)-coupled cotransporters. Drugs undergoing H(+)-coupled cotransport across the intestinal brush-border membrane include those used to treat bacterial infections, hypercholesterolaemia, hypertension, hyperglycaemia, viral infections, allergies, epilepsy, schizophrenia, rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- David T Thwaites
- Epithelial Research Group, Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
9
|
Gusev VA, Schulze-Makuch D. Low frequency electromagnetic waves as a supplemental energy source to sustain microbial growth? Naturwissenschaften 2005; 92:115-20. [PMID: 15700175 DOI: 10.1007/s00114-004-0594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
Microbial populations in tetra-distilled water collapsed when cultured in a permalloy chamber shielding the populations from the sun's and earth's electromagnetic field, but thrived when cultured in an ordinary thermostat open to the electromagnetic field. Theoretically, protons in liquid water can be excited at their natural resonance frequencies through Langmuir oscillations and obtain enough kinetic energy to charge the transmembrane potential of a cell. Microbes may be capable of converting this energy into chemical energy to supplement their energy needs.
Collapse
Affiliation(s)
- Victor A Gusev
- Sobolev Institute of Mathematics, Siberian Division, Russian Academy of Sciences, Koptyuga pr. 4, 630090 Novosibirsk, Russia
| | | |
Collapse
|
10
|
Amelkin AA, Blagoveschenskaya MM, Lobanov YV, Amelkin AK. Minimum specific cost control of technological processes realized in a living objects-containing microenvironment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2003; 10:44-8. [PMID: 12635958 DOI: 10.1065/espr2002.10.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of the present work is to work out an approach for the development of software and the choice of hardware structures when designing subsystems for automatic control of technological processes realized in living objects containing limited space (microenvironment). The subsystems for automatic control of the microenvironment (SACME) under development use the Devices for Air Prophylactic Treatment, Aeroionization, and Purification (DAPTAP) as execution units for increasing the level of safety and quality of agricultural raw material and foodstuffs, for reducing the losses of agricultural produce during storage and cultivation, as well as for intensifying the processes of activation of agricultural produce and industrial microorganisms. A set of interconnected SACMEs works within the framework of a general microenvironmental system (MES). In this research, the population of baker's yeast is chosen as a basic object of control under the industrial fed-batch cultivation in a bubbling bioreactor. This project is an example of a minimum cost automation approach. The microenvironment optimal control problem for baker's yeast cultivation is reduced from a profit maximum to the maximization of overall yield by the reason that the material flow-oriented specific cost correlates closely with the reciprocal value of the overall yield. Implementation of the project partially solves a local sustainability problem and supports a balance of microeconomical, microecological and microsocial systems within a technological subsystem realized in a microenvironment maintaining an optimal value of economical criterion (e.g. minimum material, flow-oriented specific cost) and ensuring: (a) economical growth (profit increase, raw material saving); (b) high security, safety and quality of agricultural raw material during storage process and of food produce during a technological process; elimination of the contact of gaseous harmful substances with a subproduct during various technological stages; (c) improvement of labour conditions for industrial personnel from an ecological point of view (positive effect of air aeroionization and purification on human organism promoting strengthened health and an increase in life duration, pulverent and gaseous chemical and biological impurity removal). An alternative aspect of a controlled living microenvironment forming is considered.
Collapse
Affiliation(s)
- Alexander A Amelkin
- Moscow State University of Food Production, 11 Volokolamskoye shosse, Moscow 125080, Russia.
| | | | | | | |
Collapse
|
11
|
Abstract
Mitochondria have long been recognized as the generators of energy for the cell. Like any other power source, however, mitochondria are highly vulnerable to inhibition or uncoupling of the energy harnessing process and run a high risk for catastrophic damage to the cell. The exquisite structural and functional characteristics of mitochondria provide a number of primary targets for xenobiotic-induced bioenergetic failure. They also provide opportunities for selective delivery of drugs to the mitochondrion. In light of the large number of natural, commercial, pharmaceutical, and environmental chemicals that manifest their toxicity by interfering with mitochondrial bioenergetics, it is important to understand the underlying mechanisms. The significance is further underscored by the recent identification of bioenergetic control points for cell replication and differentiation and the realization that mitochondria play a determinant role in cell signaling and apoptotic modes of cell death.
Collapse
Affiliation(s)
- K B Wallace
- Department of Biochemistry and Molecular Biology, University of Minnesota School of Medicine, Duluth 55812, USA.
| | | |
Collapse
|
12
|
Dibrov P, Fliegel L. Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport? FEBS Lett 1998; 424:1-5. [PMID: 9537504 DOI: 10.1016/s0014-5793(98)00119-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite 30 years of study on Na+/H+ exchange, the molecular mechanisms of antiport remain obscure. Most challenging, the identity of amino acids involved in binding transported cations is still unknown. We review data examining the identity of residues that are involved in cation binding and translocation of prokaryotic and eukaryotic Na+/H+ antiporters. Several polar residues specifically distributed within or immediately adjacent to membrane spanning regions are implicated as being important. These key amino acids are conserved in prokaryotes and in some lower eukaryotic forms of the Na+/ H+ antiporter, despite their being dispersed throughout the protein and despite an overall low similarity in the linear sequence of these Na+/H+ antiporters. We suggest that this conservation of isolated residues (together with distances between them) reflects a general physicochemical mechanism of cation binding by exchangers. The binding could be based on coordination of the substrate cation by a crown ether-like cluster of polar atomic groups amino acids, as has been hypothesized by Boyer. Traditional screening for the extended, highly conserved linear protein sequences might not be applicable when searching for functional domains of ion transporters. Three-dimensional constellations of polar residues (3D-motifs) may be evolutionary conserved rather than linear primary sequence.
Collapse
Affiliation(s)
- P Dibrov
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
13
|
Smigán P, Polák P, Majernik A, Greksák M. Isolation and characterization of a neomycin-resistant mutant of Methanobacterium thermoautotrophicum with a lesion in Na+-translocating ATPase (synthase). FEBS Lett 1997; 420:93-6. [PMID: 9450556 DOI: 10.1016/s0014-5793(97)01494-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mutant of Methanobacterium thermoautotrophicum with a lesion in membrane Na+-translocating ATPase (synthase) was isolated. The total ATPase activity in permeabilized cells of this mutant was elevated three-fold as compared with the wild-type strain. In contrast to wild-type cells, mutant ATPase was neither inhibited by DCCD nor stimulated by Na+ ions. The methane formation orate of the mutant cells at pH 7.5 under non-growing conditions was nearly twice that of the wild-type strain and was stimulated by sodium ions. On the other hand, the ATP synthesis driven by methanogenesis under the same conditions was lower that of the wild-type under the same conditions, and contrary to the wild-type was not stimulated by Na+ ions. ATP synthesis driven by a potassium diffusion potential in the presence of sodium ions was markedly diminished in the mutant cells. The membrane potential values of the wild-type and the mutant cells in the presence of 10 mM NaCl at pH 7.0 were comparable at energized conditions (-223 mV and -230 mV respectively). The Mg2+-dependent ATPase activity of the 10(5) x g supernatant of broken cells from the mutant cells was 30% higher than in the wild-type. On the other hand, two bands with Mg2+-dependent ATPase activity were identified by native PAGE in this fraction in both wild-type as well as in mutant. These data suggest that the binding of Na+-translocating ATPase (synthase) to the membrane spanning part is changed in the mutant strain.
Collapse
Affiliation(s)
- P Smigán
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovak Republic.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- S Jünemann
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, UK.
| |
Collapse
|
15
|
Crundwell FK. The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0302-4598(96)05175-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Varecka L, Smigán P, Greksák M. The presence of H+ and Na+ -linked Ca2+ extruding systems in Methanobacterium thermoautotrophicum. FEBS Lett 1996; 399:171-4. [PMID: 8980145 DOI: 10.1016/s0014-5793(96)01297-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of monovalent cations (Na+, K+ and choline+) and the uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) were tested on 45Ca2+ uptake by non-energized cells of Methanobacterium thermoautotrophicum. 45Ca2+ uptake was stimulated by the addition of K+ and (less) by choline+ while Na+ slowed down and even reversed it, thereby mimicking the energization of cells. The uncoupler agent, TCS, suppressed 45Ca2+ uptake in non-energized cells in the presence or absence of Na+ but in cells energized in an atmosphere of CO2+H2 it exerted a stimulating effect. Uncoupled 45Ca2+ efflux was measured in cells pre-loaded with 45Ca2+ by means of the divalent ionophore A23187 following its washing out by buffer containing serum albumin. The efflux was temperature-dependent and was stimulated by external 40Ca2+ and Na+. In the absence of Na+, the uncoupled efflux was completely inhibited by TCS, whereas in the presence of Na+, TCS was without any effect. The results are in agreement with the model in which the Ca2+ influx pathway is represented by a membrane potential-driven uniport whereas Ca2+ efflux is mediated by two transport systems - Na+/Ca2+ and H+/Ca2+ antiporters - whose participation in the total efflux is dependent on the energy of the corresponding gradients of driving ions.
Collapse
Affiliation(s)
- L Varecka
- Department of Biochemistry and Microbiology, Slovak Technical University, Bratislava, Slovak Republic
| | | | | |
Collapse
|
17
|
Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29:169-202. [PMID: 8870073 DOI: 10.1017/s0033583500005795] [Citation(s) in RCA: 515] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractTo proceed at a high rate, phosphorylating respiration requires ADP to be available. In the resting state, when the energy consumption is low, the ADP concentration decreases so that phosphorylating respiration ceases. This may result in an increase in the intracellular concentrations of O2as well as of one-electron O2reductants such asThese two events should dramatically enhance non-enzymatic formation of reactive oxygen species, i.e. of, and OHׁ, and, hence, the probability of oxidative damage to cellular components. In this paper, a concept is put forward proposing that non-phosphorylating (uncoupled or non-coupled) respiration takes part in maintenance of low levels of both O2and the O2reductants when phosphorylating respiration fails to do this job due to lack of ADP.In particular, it is proposed that some increase in the H+leak of mitochondrial membrane in State 4 lowers, stimulates O2consumption and decreases the level ofwhich otherwise accumulates and serves as one-electron O2reductant. In this connection, the role of natural uncouplers (thyroid hormones), recouplers (male sex hormones and progesterone), non-specific pore in the inner mitochondrial membrane, and apoptosis, as well as of non-coupled electron transfer chains in plants and bacteria will be considered.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
18
|
Smigán P, Majerník A, Polák P, Hapala I, Greksák M. The presence of H+ and Na(+)-translocating ATPases in Methanobacterium thermoautotrophicum and their possible function under alkaline conditions. FEBS Lett 1995; 371:119-22. [PMID: 7672109 DOI: 10.1016/0014-5793(95)00866-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two ATPases with different apparent molecular masses of approx. 500 kDa and 400 kDa were identified in the EDTA extract of the cell membranes of Methanobacterium thermoautotrophicum. Western blotting with polyclonal antiserum reactive with beta-subunit of mitochondrial ATPase from rat liver and yeast was used for further analysis of these ATPases. A strong crossreactivity with a single protein band with an apparent molecular weight of about 53 kDa (similar to beta-subunit of F-type ATPase from other sources) was found in protein extracts of whole cells of Methanobacterium thermoautotrophicum strains delta H and Marburg, as well as of Methanospirillum hungatei. This indicates the presence of F-type ATPase in methanogens. ATP synthesis driven by membrane potential which was generated by artificially-imposed delta pH in the presence of protonophorous uncoupler and sodium ions was stimulated by bafilomycin A1, an inhibitor of V- and A-type ATPases, as well as by harmaline, an inhibitor of Na+/H+ antiporter. These results indicate that cells of Methanobacterium thermoautotrophicum strain delta H contain the F-type ATP synthase which is Na(+)-translocating in addition to V- or A-type ATP synthase which is H(+)-translocating.
Collapse
Affiliation(s)
- P Smigán
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji
| | | | | | | | | |
Collapse
|