1
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Critters and contamination: Zoonotic protozoans in urban rodents and water quality. WATER RESEARCH 2024; 251:121165. [PMID: 38290188 DOI: 10.1016/j.watres.2024.121165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri‑urban areas.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
2
|
Chang Y, Li J, Zhang L. Genetic diversity and molecular diagnosis of Giardia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105482. [PMID: 37451417 DOI: 10.1016/j.meegid.2023.105482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Giardia is a genus of flagellated protozoan parasites that infect the small intestine of humans and animals, causing the diarrheal illness known as giardiasis. Giardia exhibits significant genetic diversity among its isolates, which can have important implications for disease transmission and clinical presentation. This diversity is influenced by the coevolution of Giardia with its host, resulting in the development of unique genetic assemblages with distinct phenotypic characteristics. Although panmixia has not been observed, some assemblages appear to have a broader host range and exhibit higher transmission rates. Molecular diagnostic methods enable researchers to examine the genetic diversity of Giardia populations, enhancing our understanding of the genetic diversity, population structure, and transmission patterns of this pathogen and providing insights into clinical presentations of giardiasis.
Collapse
Affiliation(s)
- Yankai Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China.
| |
Collapse
|
3
|
Lux L, Ulrich RG, Santos-Silva S, Queirós J, Imholt C, Klotz C, Paupério J, Pita R, Vale-Gonçalves H, Alves PC, Mesquita JR. Detection and Molecular Characterization of Giardia and Cryptosporidium spp. Circulating in Wild Small Mammals from Portugal. Animals (Basel) 2023; 13:515. [PMID: 36766405 PMCID: PMC9913638 DOI: 10.3390/ani13030515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Cryptosporidium spp. and Giardia spp. are important diarrhea-causing protozoan parasites worldwide that exhibit broad host ranges. Wild small mammals can harbor host-adapted and potentially zoonotic species of both parasites. The aim of this study was to investigate Cryptosporidium spp. and Giardia spp. in wild rodents and shrews in Portugal, focusing on the protist's occurrence and genetic diversity. Molecular screening by PCR at the small subunit (SSU) rRNA gene locus of 290 fecal samples from wood mice (Apodemus sylvaticus), southwestern water voles (Arvicola sapidus), Cabrera's voles (Microtus cabrerae), Lusitanian pine voles (Microtus lusitanicus), Algerian mice (Mus spretus) and greater white-toothed shrews (Crocidura russula) in Northeast Portugal revealed the low occurrence of Cryptosporidium spp. (1%) and high occurrence of Giardia spp. (32.8%). The analysis revealed that "species" was the only significant factor associated with the increasing probability of Giardia spp. infection, with the highest prevalence reported in southwestern water voles and Lusitanian pine voles. Cryptosporidium and Giardia species determination at the SSU rRNA gene locus revealed C. muris and G. microti as the only circulating species, respectively. Subtyping of the glutamate dehydrogenase (gdh) and beta-giardin (bg) genes provided evidence of the high genetic diversity within the G. microti clade. This study suggests that rodent-adapted G. microti occurs to a large extent in cricetid hosts and supports the limited role of wild rodents and shrews as natural sources of human infections in Northeast Portugal regarding the investigated parasites. Moreover, this is the first record of G. microti in southwestern water voles, Lusitanian pine voles, Algerian mice, wood mice and Cabrera's voles and C. muris in Cabrera's voles. Finally, this study improves the database of sequences relevant for the sequence typing of G. microti strains and provides new insights about the epidemiology of Giardia spp. and Cryptosporidium spp. in wild rodents and shrews, two parasite genera of high importance for public and animal health.
Collapse
Affiliation(s)
- Laura Lux
- University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sérgio Santos-Silva
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - João Queirós
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Christian Imholt
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Christian Klotz
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institute, 13353 Berlin, Germany
| | - Joana Paupério
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Ricardo Pita
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, IIFA—Institute for Research and Advanced Training, UBC—Conservation Biology Lab, University of Évora, Mitra Pole, Ap. 94, 7006-554 Évora, Portugal
| | - Hélia Vale-Gonçalves
- Laboratório de Ecologia Fluvial e Terrestre, CITAB—Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Paulo Célio Alves
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Estação Biológica de Mértola, 7750 Mértola, Portugal
| | - João R. Mesquita
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| |
Collapse
|
4
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Helmy YA, Spierling NG, Schmidt S, Rosenfeld UM, Reil D, Imholt C, Jacob J, Ulrich RG, Aebischer T, Klotz C. Occurrence and distribution of Giardia species in wild rodents in Germany. Parasit Vectors 2018; 11:213. [PMID: 29587877 PMCID: PMC5870188 DOI: 10.1186/s13071-018-2802-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Giardiasis is an important gastrointestinal parasitic disease in humans and other mammals caused by the protozoan Giardia duodenalis. This species complex is represented by genetically distinct groups (assemblages A-H) with varying zoonotic potential and host preferences. Wild rodents can harbor potentially zoonotic assemblages A and B, and the rodent-specific assemblage G. Other Giardia spp. found in these animals are Giardia muris and Giardia microti. For the latter, only limited information on genetic typing is available. It has been speculated that wild rodents might represent an important reservoir for parasites causing human giardiasis. The aim of this study was to investigate the occurrence and distribution of Giardia spp. and assemblage types in wild rodents from different study sites in Germany. RESULTS Screening of 577 wild rodents of the genera Apodemus, Microtus and Myodes, sampled at eleven study sites in Germany, revealed a high overall Giardia prevalence. Giardia species determination at the SSU rDNA gene locus revealed that Apodemus mice, depending on species, were predominantly infected with one of two distinct G. muris sequence types. Giardia microti was the predominant parasite species found in voles of the genera Microtus and Myodes. Only a few animals were positive for potentially zoonotic G. duodenalis. Subtyping at the beta-giardin (bg) and glutamine dehydrogenase (gdh) genes strongly supported the existence of different phylogenetic subgroups of G. microti that are preferentially harbored by distinct host species. CONCLUSIONS The present study highlights the preference of G. muris for Apodemus, and G. microti for Microtus and Myodes hosts and argues for a very low prevalence of zoonotic G. duodenalis assemblages in wild rodents in Germany. It also provides evidence that G. muris and G. microti subdivide into several phylogenetically distinguishable subgroups, each of which appears to be preferentially harbored by species of a particular rodent host genus. Finally, the study expands the database of sequences relevant for sequence typing of G. muris and G. microti isolates which will greatly help future analyses of these parasites' population structure.
Collapse
Affiliation(s)
- Yosra A Helmy
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institute, 13353, Berlin, Germany.,Department Panel Veterinary Public Health, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.,Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41511, Egypt
| | - Nastasja G Spierling
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald - Insel Riems, Germany
| | - Sabrina Schmidt
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald - Insel Riems, Germany.,German Society of Tissue Transplantation, Kruppstraße 98, 45145, Essen, Germany
| | - Ulrike M Rosenfeld
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald - Insel Riems, Germany
| | - Daniela Reil
- Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, 48161, Münster, Germany
| | - Christian Imholt
- Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, 48161, Münster, Germany
| | - Jens Jacob
- Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, 48161, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald - Insel Riems, Germany
| | - Toni Aebischer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institute, 13353, Berlin, Germany
| | - Christian Klotz
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
6
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|
7
|
Use of the Syrian hamster as a new model of ebola virus disease and other viral hemorrhagic fevers. Viruses 2012; 4:3754-84. [PMID: 23242370 PMCID: PMC3528289 DOI: 10.3390/v4123754] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 01/01/2023] Open
Abstract
Historically, mice and guinea pigs have been the rodent models of choice for therapeutic and prophylactic countermeasure testing against Ebola virus disease (EVD). Recently, hamsters have emerged as a novel animal model for the in vivo study of EVD. In this review, we discuss the history of the hamster as a research laboratory animal, as well as current benefits and challenges of this model. Availability of immunological reagents is addressed. Salient features of EVD in hamsters, including relevant pathology and coagulation parameters, are compared directly with the mouse, guinea pig and nonhuman primate models.
Collapse
|
8
|
|
9
|
|
10
|
Scharek L, Hartmann L, Heinevetter L, Blaut M. Bifidobacterium adolescentis modulates the specific immune response to another human gut bacterium, Bacteroides thetaiotaomicron, in gnotobiotic rats. Immunobiology 2000; 202:429-41. [PMID: 11205373 DOI: 10.1016/s0171-2985(00)80102-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In order to investigate the capability of an autochthonous bacterium to modulate the host's immune response against the indigenous microfiora, the immunogenicity of two selected bacterial species of the human gut was investigated in a gnotobiotic rat model. Germ-free (GF) rats were monoassociated with either Bifidobacterium (B.) adolescentis or Bacteroides (B.) thetaiotaomicron and the development of bacteria-specific IgG and IgA in serum and specific secretory IgA (sIgA) in feces of the animals were measured. Knowing the antibody levels in gnotobiotic rats induced by monoassociation, we subsequently diassociated two groups of rats in order to investigate the impact of B. adolescentis on the immune reaction against B. thetaiotaomicron. One group was diassociated simultaneously with B. adolescentis and B. thetaiotaomicron, the second group was diassociated with these bacteria in sequence. In contrast to B. thetaiotaomicron, B. adolescentis was not able to induce a systemic immune response in monoassociated animals as evident from serum IgG and IgA. However, both bacterial species challenged the mucosal immune system as indicated by an increase in sIgA in the feces. The specific immune response to B. thetaiotaomicron was significantly lower in diassociated animals than in animals monoassociated with B. thetaiotaomicron. This effect was more pronounced in the rats, that had been associated sequentially. The presence of B. adolescentis down-regulated the humoral immunity to B. thetaiotaomicron.
Collapse
Affiliation(s)
- L Scharek
- German Institute of Human Nutrition, Potsdam-Rehbrücke.
| | | | | | | |
Collapse
|
11
|
Baker DG. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 1998; 11:231-66. [PMID: 9564563 PMCID: PMC106832 DOI: 10.1128/cmr.11.2.231] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research.
Collapse
Affiliation(s)
- D G Baker
- Division of Laboratory Animal Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70810, USA.
| |
Collapse
|