1
|
Herdt AR, Peng H, Dickson DW, Golde TE, Eckman EA, Lee CW. Brain Targeted AAV1-GALC Gene Therapy Reduces Psychosine and Extends Lifespan in a Mouse Model of Krabbe Disease. Genes (Basel) 2023; 14:1517. [PMID: 37628569 PMCID: PMC10454254 DOI: 10.3390/genes14081517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken β-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.
Collapse
Affiliation(s)
- Aimee R. Herdt
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Hui Peng
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A. Eckman
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Chris W. Lee
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| |
Collapse
|
2
|
Papini N, Giallanza C, Brioschi L, Ranieri FR, Giussani P, Mauri L, Ciampa MG, Viani P, Tringali C. Galactocerebrosidase deficiency induces an increase in lactosylceramide content: A new hallmark of Krabbe disease? Int J Biochem Cell Biol 2022; 145:106184. [PMID: 35217188 DOI: 10.1016/j.biocel.2022.106184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 12/11/2022]
Abstract
Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3β) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.
Collapse
Affiliation(s)
- Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Chiara Giallanza
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Francesca Romana Ranieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy.
| |
Collapse
|
3
|
Nasir G, Chopra R, Elwood F, Ahmed SS. Krabbe Disease: Prospects of Finding a Cure Using AAV Gene Therapy. Front Med (Lausanne) 2021; 8:760236. [PMID: 34869463 PMCID: PMC8633897 DOI: 10.3389/fmed.2021.760236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Krabbe Disease (KD) is an autosomal metabolic disorder that affects both the central and peripheral nervous systems. It is caused by a functional deficiency of the lysosomal enzyme, galactocerebrosidase (GALC), resulting in an accumulation of the toxic metabolite, psychosine. Psychosine accumulation affects many different cellular pathways, leading to severe demyelination. Although there is currently no effective therapy for Krabbe disease, recent gene therapy-based approaches in animal models have indicated a promising outlook for clinical treatment. This review highlights recent findings in the pathogenesis of Krabbe disease, and evaluates AAV-based gene therapy as a promising strategy for treating this devastating pediatric disease.
Collapse
Affiliation(s)
- Gibran Nasir
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Rajiv Chopra
- AllianThera Biopharma, Boston, MA, United States
| | - Fiona Elwood
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Seemin S Ahmed
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| |
Collapse
|
4
|
Zhu H, Ornaghi F, Belin S, Givogri MI, Wrabetz L, Bongarzone ER. Generation of a LacZ reporter transgenic mouse line for the stereological analysis of oligodendrocyte loss in galactosylceramidase deficiency. J Neurosci Res 2016; 94:1520-1530. [PMID: 27426866 PMCID: PMC5069144 DOI: 10.1002/jnr.23839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 11/11/2022]
Abstract
Krabbe's disease is a leukodystrophy resulting from deficiency of galactosylceramidase and the accumulation of galactosylsphingosine (psychosine) in the nervous system. Psychosine is believed to cause central demyelination by killing oligodendrocytes. Quantitative analysis of this process is lacking. To address this, we generated a new transgenic reporter twitcher line in which myelinating oligodendrocytes are genetically marked by the expression of LacZ under control of the myelin basic protein (MBP) promoter. MBP-LacZ-twitcher transgenic mice were used for unbiased stereological quantification of β-galactosidase+ oligodendrocytes in the spinal cord. As expected, we found decreased numbers of these cells in mutant cords, paralleling the severity of clinical disease. The decrease of oligodendrocytes does not correlate well with the increase of psychosine. The new MBP-LacZ-twitcher line will be a useful genetic tool for measuring changes in oligodendrocyte numbers in different regions of the mutant CNS and in preclinical trials of therapies to prevent demyelination. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Francesca Ornaghi
- San Raffaele Scientific Institute, Milano, Italy
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Sophie Belin
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Won JS, Kim J, Paintlia MK, Singh I, Singh AK. Role of endogenous psychosine accumulation in oligodendrocyte differentiation and survival: implication for Krabbe disease. Brain Res 2013; 1508:44-52. [PMID: 23438514 DOI: 10.1016/j.brainres.2013.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 11/16/2022]
Abstract
Krabbe disease is a lethal, demyelinating condition caused by genetic deficiency of galactocerebrosidase (GALC) and resultant accumulation of its cytotoxic substrate, psychosine (galactosylsphingosine), primarily in oligodendrocytes (OLs). Psychosine is generated by galactosylation of sphingosine by UDP-galactose:ceramide galactosyltransferase (CGT), a galactosylceramide synthesizing enzyme which is primarily expressed in OLs. The expression of CGT and the synthesis of galactosyl-sphingolipids are associated with the terminal differentiation of OL, but little is known about the participation of endogenous psychosine accumulation in OL differentiation under GALC deficient conditions. In this study, we report that accumulation of endogenous psychosine under GALC deficient Krabbe conditions impedes OL differentiation process both by decreasing the expression of myelin lipids and protein and by inducing the cell death of maturating OLs. The psychosine pathology under GALC deficient conditions involves participation of secretory phospholipase A2 (sPLA2) activation and increase in its metabolites, as evidenced by attenuation of psychosine-induced pathology by treatment with pharmacological inhibitor of sPLA2 7,7-dimethyleicosadienoic acid (DEDA). These observations suggest for potential therapeutic efficacy of sPLA2 inhibitor in Krabbe disease.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | | | | | | |
Collapse
|
6
|
Terrell KA, Rasmussen TA, Trygg C, Bunnell BA, Buck WR. Molecular beacon genotyping for globoid cell leukodystrophy from hair roots in the twitcher mouse and rhesus macaque. J Neurosci Methods 2007; 163:60-6. [PMID: 17412425 PMCID: PMC2043377 DOI: 10.1016/j.jneumeth.2007.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 02/12/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Rapid and accurate genotype determination is ideal for the maintenance of breeding colonies of laboratory animal models of genetic disease. The rhesus macaque and murine (twitcher) models of globoid cell leukodystrophy have a dinucleotide deletion or single nucleotide substitution, respectively, which abolish ceramide beta-galactosidase activity and are authentic models of Krabbe disease. We report a molecular beacon PCR assay for each species which allows unambiguous determination of the genotype in under 4h. The assay works reliably with DNA extracted from hair roots using Chelex-100 in a 20 min, 100 degrees C incubation. We demonstrate that genotyping from hair roots is a preferred alternative to collecting blood or tissue for DNA extraction because it reduces animal distress, uses an inexpensive reagent, and is simpler and faster. Following amplification on a standard thermocycler with a 96-well plate format, these molecular beacon assays can be read on a standard laboratory fluorescent plate reader, eliminating the need to use a real-time thermocycler or to open the plate for subsequent restriction enzyme digestion and gel electrophoresis. The multiplexed ratio of fluorescence from wild-type- and mutant-specific beacons reporting at 560 nm and 535 nm wavelengths is distinct for each genotype.
Collapse
Affiliation(s)
- Kimberly A Terrell
- Department of Biology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | | | | | | | | |
Collapse
|
7
|
Elleder M. Glucosylceramide transfer from lysosomes--the missing link in molecular pathology of glucosylceramidase deficiency: a hypothesis based on existing data. J Inherit Metab Dis 2006; 29:707-15. [PMID: 17080304 DOI: 10.1007/s10545-006-0411-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/11/2006] [Accepted: 09/25/2006] [Indexed: 12/27/2022]
Abstract
Gaucher disease (GD), deficiency of acid glucosylceramidase (GlcCer-ase) is characterized by deficient degradation of beta-glucosylceramide (GlcCer). It is well known that, in GD, the lysosomal accumulation of uncleaved GlcCer is limited to macrophages, which are gradually converted to storage cells with well known cytology--Gaucher cells (GCs). On the basis of previous studies of the disorder and of a comparison with other lysosomal enzymopathies affecting degradation of the GlcCer-based glycosphingolipid series, it is hypothesized that in other cell types (i.e. non-macrophage cells) the uncleaved GlcCer, in GlcCer-ase deficiency, is transferred to other cell compartments, where it may be processed and even accumulated to various degrees. The consequence of the abnormal extralysosomal load may differ according to the cell type and compartment targeted and may be influenced by genetically determined factors, by a number of acquired conditions, including the current metabolic situation. The sequelae of the uncleaved GlcCer extralysosomal transfer may range from probably innocent or positive stimulatory, to the much more serious, in which it interferes with a variety of cell functions, and in extreme cases, can lead to cell death. This alternative processing of uncleaved GlcCer may help to explain tissue alterations seen in GD that have, so far, resisted explanation based simply on the presence of GCs. Paralysosomal alternative processing may thus go a long way towards filling a long-standing gap in the understanding of the molecular pathology of the disorder. The impact of this alternative process will most likely be inversely proportional to the level of residual GlcCer-ase activity. Lysosomal sequestration of GlcCer in these cells is either absent or in those exceptional cases where it does occur, it is exceptional and rudimentary. It is suggested that paralysosomal alternative processing of uncleaved GlcCer is the main target for enzyme replacement therapy. The mechanism responsible for GlcCer transfer remains to be elucidated. It may also help in explaining the so far unclear origin of glucosylsphingosine (GlcSph) and define the mutual relation between these two processes.
Collapse
Affiliation(s)
- M Elleder
- Institute of Inherited Metabolic Disorders, Charles University Prague, 1st Faculty of Medicine and University Hospital, Bldg. D, Division B, Ke Karlovu 2, 128 08, Prague 2, Czech Republic.
| |
Collapse
|
8
|
Kanazawa T, Nakamura S, Momoi M, Yamaji T, Takematsu H, Yano H, Sabe H, Yamamoto A, Kawasaki T, Kozutsumi Y. Inhibition of cytokinesis by a lipid metabolite, psychosine. J Cell Biol 2000; 149:943-50. [PMID: 10811833 PMCID: PMC2174564 DOI: 10.1083/jcb.149.4.943] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1999] [Accepted: 04/05/2000] [Indexed: 11/22/2022] Open
Abstract
Although a number of cellular components of cytokinesis have been identified, little is known about the detailed mechanisms underlying this process. Here, we report that the lipid metabolite psychosine (galactosylsphingosine), derived from galactosylceramide, induced formation of multinuclear cells from a variety of nonadherent and adherent cells due to inhibition of cytokinesis. When psychosine was added to the human myelomonocyte cell line U937, which was the most sensitive among the cell lines tested, cleavage furrow formed either incompletely or almost completely. However, abnormal contractile movement was detected in which the cellular contents of one of the hemispheres of the contracting cell were transferred into its counterpart. Finally, the cleavage furrow disappeared and cytokinesis was reversed. Psychosine treatment also induced giant clots of actin filaments in the cells that probably consisted of small vacuoles with filamentous structures, suggesting that psychosine affected actin reorganization. These observations could account for the formation of multinuclear globoid cells in the brains of patients with globoid cell leukodystrophy, a neurological disorder characterized by the accumulation of psychosine due to galactosylceramidase deficiency.
Collapse
Affiliation(s)
- Takayuki Kanazawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Sachiko Nakamura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Michiko Momoi
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Toshiyuki Yamaji
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromu Takematsu
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hajime Yano
- Department of Molecular Biology, Osaka Bioscience Institute, Suita 565-0874, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Osaka Bioscience Institute, Suita 565-0874, Japan
| | - Akitsugu Yamamoto
- Department of Physiology and Liver Research Center, Kansai Medical University, Moriguchi 570-0074, Japan
| | - Toshisuke Kawasaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yasunori Kozutsumi
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Kobayashi T, Goto I, Okada S, Orii T, Ohno K, Nakano T. Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses. J Neurochem 1992; 59:1452-8. [PMID: 1402895 DOI: 10.1111/j.1471-4159.1992.tb08460.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By using a sensitive method, we assayed lysocompounds of gangliosides and asialogangliosides in tissues from four patients with GM2 gangliosidosis (one with Sandhoff disease and three with Tay-Sachs disease) and from three patients with GM1 gangliosidosis [one with infantile type (fetus), one with late-infantile, and one with adult type]. In the brain and spinal cord of all the patients except for an adult GM1 gangliosidosis patient, abnormal accumulation of the lipids was observed, though the concentration in the fetal tissue was low. In GM2 gangliosidosis, the amounts of lyso GM2 ganglioside accumulated in the brain were similar among the patient with Sandhoff disease and the patients with Tay-Sachs disease, whereas the concentration of asialo lyso GM2 ganglioside in the brain was higher in the former patient than in the latter patients. By comparing the sphingoid bases of neutral sphingolipids, gangliosides, and lysosphingolipids, it was suggested that lysosphingolipids in the diseased tissue are synthesized by sequential glycosylation from free sphingoid bases, but not by deacylation of the sphingolipids. Because lysosphingolipids are known to be cytotoxic, the abnormally accumulated lysophingolipids may well be the pathogenetic agent for the neuronal degeneration in gangliosidoses.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Neurology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Kobayashi T, Goto I. A sensitive assay of lysogangliosides using high-performance liquid chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:159-66. [PMID: 1998733 DOI: 10.1016/0005-2760(91)90021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lysogangliosides, LGM1, LGM2 and LGM3, each carrying a single sphingoid base (i.e., C18:1, C18:0, C20:1, C20:0), were prepared and a sensitive assay method of these lipids using HPLC was developed. The method involves fluorescence derivatization of the free amino group of the molecule with o-phthalaldehyde, separation of the molecular species of each lysoganglioside using reversed-phase HPLC and assay on the basis of a known amount of one of the lysogangliosides, as the internal standard. Using this method, lysoganglioside can be accurately assayed in the range of 5-1000 pmol. For assay of the lipid in the tissue, crude isolation procedures including extraction of lipids, Folch's partition and DEAE-Sepharose and AG 1-X2 column chromatographies were required before the fluorescence derivatization. In the normal human and the bovine cerebral cortex, 0.4-2.0 pmol/mg protein of LGM1 containing C18:1 and C20:1 sphingosine residues were detected. In the frontal cortex from a patient with Sandhoff disease, an abnormal accumulation (55-78 pmol/mg protein) of LGM2 was noted. Among various molecular species, LGM2 containing C18:1 was the most abundant.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Neurology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|