1
|
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014; 159:148-162. [PMID: 25219674 DOI: 10.1016/j.cell.2014.08.028] [Citation(s) in RCA: 752] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function.
Collapse
Affiliation(s)
| | | | | | - Marko Jovanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rebecca H Herbst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Brian X León-Ricardo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00931, Puerto Rico
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Gerald Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Heindl K, Martinez J. Nol9 is a novel polynucleotide 5'-kinase involved in ribosomal RNA processing. EMBO J 2010; 29:4161-71. [PMID: 21063389 PMCID: PMC3018789 DOI: 10.1038/emboj.2010.275] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/18/2010] [Indexed: 01/19/2023] Open
Abstract
The production and processing of ribosomal RNA is an essential and complex process. Here, a polynucleotide 5′-kinase, Nol9, is shown to have an important function in pre-rRNA processing and 60S ribosomal subunit biogenesis. In a cell, an enormous amount of energy is channelled into the biogenesis of ribosomal RNAs (rRNAs). In a multistep process involving a large variety of ribosomal and non-ribosomal proteins, mature rRNAs are generated from a long polycistronic precursor. Here, we show that the non-ribosomal protein Nol9 is a polynucleotide 5′-kinase that sediments primarily with the pre-60S ribosomal particles in HeLa nuclear extracts. Depletion of Nol9 leads to a severe impairment of ribosome biogenesis. In particular, the polynucleotide kinase activity of Nol9 is required for efficient generation of the 5.8S and 28S rRNAs from the 32S precursor. Upon Nol9 knockdown, we also observe a specific maturation defect at the 5′ end of the predominant 5.8S short-form rRNA (5.8SS), possibly due to the Nol9 requirement for 5′>3′ exonucleolytic trimming. In contrast, the endonuclease-dependent generation of the 5′-extended, minor 5.8S long-form rRNA (5.8SL) is largely unaffected. This is the first report of a nucleolar polynucleotide kinase with a role in rRNA processing.
Collapse
Affiliation(s)
- Katrin Heindl
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
3
|
Xiao S, Hsieh J, Nugent RL, Coughlin DJ, Fierke CA, Engelke DR. Functional characterization of the conserved amino acids in Pop1p, the largest common protein subunit of yeast RNases P and MRP. RNA (NEW YORK, N.Y.) 2006; 12:1023-37. [PMID: 16618965 PMCID: PMC1464857 DOI: 10.1261/rna.23206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
4
|
Kaye NM, Zahler NH, Christian EL, Harris ME. Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA. J Mol Biol 2002; 324:429-42. [PMID: 12445779 DOI: 10.1016/s0022-2836(02)01094-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Like protein enzymes, catalytic RNAs contain conserved structure motifs important for function. A universal feature of the catalytic domain of ribonuclease P RNA is a bulged-helix motif within the P1-P4 helix junction. Here, we show that changes in bulged nucleotide identity and position within helix P4 affect both catalysis and substrate binding, while a subset of the mutations resulted only in catalytic defects. We find that the proximity of the bulge to sites of metal ion coordination in P4 is important for catalysis; moving the bulge distal to these sites and deleting it had similarly large effects, while moving it proximal to these sites had only a moderate effect on catalysis. To test whether the effects of the mutations are linked to metal ion interactions, we used terbium-dependent cleavage of the phosphate backbone to probe metal ion-binding sites in the wild-type and mutant ribozymes. We detect cleavages at specific sites within the catalytic domain, including helix P4 and J3/4, which have previously been shown to participate directly in metal ion interactions. Mutations introduced into P4 cause local changes in the terbium cleavage pattern due to alternate metal ion-binding configurations with the helix. In addition, a bulge deletion mutation results in a 100-fold decrease in the single turnover cleavage rate constant at saturating magnesium levels, and a reduced affinity for magnesium ions important for catalysis. In light of the alternate terbium cleavage pattern in P4 caused by bulge deletion, this decreased ability to utilize magnesium ions for catalysis appears to be due to localized structural changes in the ribozyme's catalytic core that weaken metal ion interactions in P4 and J3/4. The information reported here, therefore, provides evidence that the universal conservation of the P4 structure is based in part on optimization of metal ion interactions important for catalysis.
Collapse
Affiliation(s)
- Nicholas M Kaye
- Center for RNA Molecular Biology, and Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
5
|
Affiliation(s)
- T Cai
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
6
|
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Felicia Scott
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
7
|
XIAO SHAOHUA, HOUSER-SCOTT FELICIA, ENGELKE DAVIDR. Eukaryotic ribonuclease P: increased complexity to cope with the nuclear pre-tRNA pathway. J Cell Physiol 2001; 187:11-20. [PMID: 11241345 PMCID: PMC3758117 DOI: 10.1002/1097-4652(200104)187:1<11::aid-jcp1055>3.0.co;2-k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ribonuclease P is an ancient enzyme that cleaves pre-tRNAs to generate mature 5' ends. It contains an essential RNA subunit in Bacteria, Archaea, and Eukarya, but the degree to which the RNA subunit relies on proteins to supplement catalysis is highly variable. The eukaryotic nuclear holoenzyme has recently been found to contain almost twenty times the protein content of the bacterial enzymes, in addition to having split into at least two related enzymes with distinct substrate specificity. In this review, recent progress in understanding the molecular architecture and functions of nuclear forms of RNase P will be considered.
Collapse
Affiliation(s)
| | | | - DAVID R. ENGELKE
- Correspondence: David R. Engelke, Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| |
Collapse
|
8
|
Stevens SW. Analysis of low-abundance ribonucleoprotein particles from yeast by affinity chromatography and mass spectrometry microsequencing. Methods Enzymol 2001; 318:385-98. [PMID: 10890001 DOI: 10.1016/s0076-6879(00)18065-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- S W Stevens
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|
9
|
Shadel GS, Buckenmeyer GA, Clayton DA, Schmitt ME. Mutational analysis of the RNA component of Saccharomyces cerevisiae RNase MRP reveals distinct nuclear phenotypes. Gene 2000; 245:175-84. [PMID: 10713458 DOI: 10.1016/s0378-1119(00)00013-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 340-nucleotide RNA component of Saccharomyces cerevisiae RNase MRP is encoded by the single-copy essential gene, NME1. To gain additional insight into the proposed structure and functions of this endoribonuclease, we have extensively mutagenized the NME1 gene and characterized yeast strains expressing mutated forms of the RNA using a gene shuffle technique. Strains expressing each of 26 independent mutations in the RNase MRP RNA gene were characterized for their ability to grow at various temperatures and on various carbon sources, stability of the RNase MRP RNA and processing of the 5.8S rRNA (a nuclear function of RNase MRP). 11 of the mutations resulted in a lethal phenotype, six displayed temperature-conditional lethality, and several preferred a non-fermentable carbon source for growth. In those mutants that exhibited altered growth phenotypes, the severity of the growth defect was directly proportional to the severity of the 5.8S rRNA processing defect in the nucleus. Together this analysis has defined essential regions of the RNase MRP RNA and provides evidence that is consistent with the proposed function of the RNase MRP enzyme.
Collapse
Affiliation(s)
- G S Shadel
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, USA
| | | | | | | |
Collapse
|
10
|
Cai T, Reilly TR, Cerio M, Schmitt ME. Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Mol Cell Biol 1999; 19:7857-69. [PMID: 10523674 PMCID: PMC84863 DOI: 10.1128/mcb.19.11.7857] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to have roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. SNM1 encodes an essential 22.5-kDa protein that is a component of yeast RNase MRP. It is an RNA binding protein that binds the MRP RNA specifically. This 198-amino-acid protein can be divided into three structural regions: a potential leucine zipper near the amino terminus, a binuclear zinc cluster in the middle region, and a serine- and lysine-rich region near the carboxy terminus. We have performed PCR mutagenesis of the SNM1 gene to produce 17 mutants that have a conditional phenotype for growth at different temperatures. Yeast strains carrying any of these mutations as the only copy of snm1 display an rRNA processing defect identical to that in MRP RNA mutants. We have characterized these mutant proteins for RNase MRP function by examining 5.8S rRNA processing, MRP RNA binding in vivo, and the stability of the RNase MRP RNA. The results indicate two separate functional domains of the protein, one responsible for binding the MRP RNA and a second that promotes substrate cleavage. The Snm1 protein appears not to be required for the stability of the MRP RNA, but very low levels of the protein are required for processing of the 5.8S rRNA. Surprisingly, a large number of conditional mutations that resulted from nonsense and frameshift mutations throughout the coding regions were identified. The most severe of these was a frameshift at amino acid 7. These mutations were found to be undergoing translational suppression, resulting in a small amount of full-length Snm1 protein. This small amount of Snm1 protein was sufficient to maintain enough RNase MRP activity to support viability. Translational suppression was accomplished in two ways. First, CEN plasmid missegregation leads to plasmid amplification, which in turn leads to SNM1 mRNA overexpression. Translational suppression of a small amount of the superabundant SNM1 mRNA results in sufficient Snm1 protein to support viability. CEN plasmid missegregation is believed to be the result of a prolonged telophase arrest that has been recently identified in RNase MRP mutants. Either the SNM1 gene is inherently susceptible to translational suppression or extremely small amounts of Snm1 protein are sufficient to maintain essential levels of MRP activity.
Collapse
Affiliation(s)
- T Cai
- Department of Biochemistry, State University of New York Health Science Center at Syracuse, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
11
|
Schmitt ME. Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP. J Mol Biol 1999; 292:827-36. [PMID: 10525408 DOI: 10.1006/jmbi.1999.3116] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNase mitochondrial RNA processing (MRP) is a ribonucleoprotein endoribonuclease that is involved in RNA processing events in both the nucleus and the mitochondria. The MRP RNA is both structurally and evolutionarily related to RNase P, the ribonucleoprotein endoribonuclease that processes the 5'-end of tRNAs. Previous analysis of the RNase MRP RNA by phylogenetic analysis and chemical modification has revealed strikingly conserved secondary structural elements in all characterized RNase MRP RNAs. Utilizing successive constraint modeling and energy minimization I derived a three-dimensional model of the yeast RNase MRP RNA. The final model predicts several notable features. First, the enzyme appears to contain two separate structural domains, one that is highly conserved among all MRP and P RNAs and a second that is only conserved in MRP RNAs. Second, nearly all of the highly conserved nucleotides cluster in the first domain around a long-range interaction (LRI-I). This LRI-I is characterized by a ubiquitous uridine base, which points into a cleft between these two structural domains generating a potential active site for RNA cleavage. Third, helices III and IV (the yeast equivalent of the To-binding site) model as a long extended helix. This region is believed to be the binding site of shared proteins between RNase P and RNase MRP and would provide a necessary platform for binding these seven proteins. Indeed, several residues conserved between the yeast MRP and P RNAs cluster in the central region of these helixes. Lastly, characterized mutations in the MRP RNA localize in the model based on their severity. Those mutations with little or no effect on the activity of the enzyme localize to the periphery of the model, while the most severe mutations localize to the central portion of the molecule where they would be predicted to cause large structural defects. Press.
Collapse
Affiliation(s)
- M E Schmitt
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center at Syracuse, 750 East Adams Street, Syracuse, NY, 13210, USA. schmittm@hscsyr
| |
Collapse
|