1
|
Chowdhury GMI, Jiang L, Rothman DL, Behar KL. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J Cereb Blood Flow Metab 2014; 34:1233-42. [PMID: 24780902 PMCID: PMC4083391 DOI: 10.1038/jcbfm.2014.77] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 03/12/2014] [Accepted: 04/06/2014] [Indexed: 01/30/2023]
Abstract
The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-(13)C₂]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (V(acCoA-kbN)) and pyruvate (V(pdhN)), and the glutamate-glutamine cycle (V(cyc)) were determined by metabolic modeling of (13)C label trapped in major brain amino acid pools. V(acCoA-kbN) increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (V(tcaN)), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons.
Collapse
Affiliation(s)
- Golam M I Chowdhury
- Department of Psychiatry, The Anlyan Center, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lihong Jiang
- Department of Diagnostic Radiology, The Anlyan Center, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Douglas L Rothman
- Department of Diagnostic Radiology, The Anlyan Center, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin L Behar
- Department of Psychiatry, The Anlyan Center, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Prins ML. Cerebral ketone metabolism during development and injury. Epilepsy Res 2011; 100:218-23. [PMID: 22104087 DOI: 10.1016/j.eplepsyres.2011.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/27/2023]
Abstract
Cerebral metabolism of ketones is a normal part of the process of brain development. While the mature brain relies on glucose as a primary fuel source, metabolism of ketone bodies remains an alternative energy source under conditions of starvation. The neuroprotective properties of brain ketone metabolism make this alternative substrate a viable therapeutic option for various pathologies. Since the ability to revert to utilizing ketones as an alternative substrate is greatest in the younger post-weaned brain, this particular therapeutic approach remains an untapped resource particularly for pediatric pathological conditions.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA.
| |
Collapse
|
3
|
Prins ML, Hovda DA. The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. J Neurotrauma 2010; 26:1083-93. [PMID: 19226210 DOI: 10.1089/neu.2008.0769] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies from our laboratory have shown the neuroprotective potential of ketones after TBI in the juvenile brain. It is our premise that acutely after TBI, glucose may not be the optimum fuel and decreasing metabolism of glucose in the presence of an alternative substrate will improve cellular metabolism and recovery. The current study addresses whether TBI will induce age-related differences in the cerebral metabolic rates for glucose (CMRglc) after cortical controlled impact (CCI) and whether ketone metabolism will further decrease CMRglc after injury. Postnatal day 35 (PND35; n = 48) and PND70 (n = 42) rats were given either sham or CCI injury and placed on either a standard or a ketogenic (KG) diet. CMRglc studies using (14)C-2 deoxy-D-glucose autoradiography were conducted on days 1, 3, or 7 post-injury. PND35 and PND70 standard-fed CCI-injured rats exhibited no significant neocortical differences in CMRglc magnitude or time course compared to controls. Measurement of contusion volume also indicated no age differences in response to TBI. However, PND35 subcortical structures showed earlier metabolic recovery compared to controls than PND70. Ketosis induced by the KG diet was shown to affect CMRglc in an age-dependent manner after TBI. The presence of ketones after injury further reduced CMRglc in PND35 and normalized CMRglc in PND70 rats at 7 days bilaterally after injury. The changes in CMRglc seen in PND35 TBI rats on the KG diet were associated with decreased contusion volume. These results suggest that conditions of reduced glucose utilization and increased alternative substrate metabolism may be preferable acutely after TBI in the younger rat.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California 90095-7039, USA.
| | | |
Collapse
|
4
|
Abstract
The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the 'post-weaned/adult' brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain's capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation.
Collapse
Affiliation(s)
- Mayumi L Prins
- 1UCLA Division of Neurosurgery, Los Angeles, California 90095, USA.
| |
Collapse
|
5
|
Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 2004; 70:265-75. [PMID: 14769485 DOI: 10.1016/j.plefa.2003.07.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 07/01/2003] [Indexed: 11/20/2022]
Abstract
As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 405, Faculty of Medicine, 11, rue Humann, 67085 Strasbourg Cedex, France.
| |
Collapse
|
6
|
Nehlig A. Imaging and the ontogeny of brain metabolism. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1993; 7:627-42. [PMID: 8379908 DOI: 10.1016/s0950-351x(05)80211-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Nehlig
- INSERM U272, Université de Nancy I, France
| |
Collapse
|
7
|
Nehlig A, Pereira de Vasconcelos A. Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 1993; 40:163-221. [PMID: 8430212 DOI: 10.1016/0301-0082(93)90022-k] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Nehlig
- INSERM U 272, Pathologie et Biologie du Développement Humain, Université de Nancy I, France
| | | |
Collapse
|
8
|
Nehlig A, Boyet S, Pereira de Vasconcelos A. Autoradiographic measurement of local cerebral beta-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience 1991; 40:871-8. [PMID: 2062444 DOI: 10.1016/0306-4522(91)90018-j] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An autoradiographic method has been developed for the regional assessment of cerebral tracer levels after the acute intravenous injection of [3-14C]beta-hydroxybutyrate in developing rats. The animals were studied at five postnatal stages, i.e. postnatal day 10 (P10), P14, P17, P21 and P35. Tracer levels were high from P10 to P17, reaching peak values at P14, which were two- to threefold higher than those at P10. At P17, tracer concentrations were about twice as low as at P14. Between P17 and P21, regional 14C concentrations were again reduced by about twofold in all areas studied and decreased further by about 50% after weaning reaching quite low levels by P35. The distribution of 14C inside sections appeared to be rather homogeneous throughout the brain at all stages studied, never exceeding a ratio higher than 2 at any stage studied. These results are in good agreement with previous data on the rate of uptake and utilization of beta-hydroxybutyrate by the immature rat brain.
Collapse
|
9
|
Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metab 1991; 11:35-47. [PMID: 1984003 DOI: 10.1038/jcbfm.1991.4] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, using positron emission tomography (PET), we showed that local cerebral metabolic rates for glucose (lCMRglc) in children undergo dynamic maturational trends before reaching adult values. In order to develop an animal model that can be used to explore the biological significance of the different segments of the lCMRglc maturational curve, we measured lCMRglc in kittens at various stages of postnatal development and in adult cats using quantitative [14C]2-deoxyglucose autoradiography. In the kitten, very low lCMRglc levels (0.14 to 0.53 mumol min-1 g-1) were seen during the first 15 days of life, with phylogenetically older brain regions being generally more metabolically mature than newer structures. After 15 days of age, many brain regions (particularly telencephalic structures) underwent sharp increases of lCMRglc to reach, or exceed, adult rates by 60 days. This developmental period (15 to 60 days) corresponds to the time of rapid synaptic proliferation known to occur in the cat. At 90 and 120 days, a slight decline in lCMRglc was observed, but this was followed by a second, larger peak occurring at about 180 days, when sexual maturation occurs in the cat. Only after 180 days did lCMRglc decrease to reach final adult values (0.21 to 2.04 mumol min-1 g-1). In general, there was good correlation between the metabolic maturation of various neuroanatomical regions and the emergence of behaviors mediated by the specific region. At least in the kitten visual cortex, which has been extensively studied with respect to developmental plasticity, the "critical period" corresponded to that portion of the lCMRglc maturational curve surrounding the 60-day metabolic peak. These normal maturational lCMRglc data will serve as baseline values with which to compare anatomical and metabolic plasticity changes induced by age-related lesions in the cat.
Collapse
|
10
|
Miller AL, Hatch JP, Prihoda TJ. Dichloroacetate increases glucose use and decreases lactate in developing rat brain. Metab Brain Dis 1990; 5:195-204. [PMID: 2087218 DOI: 10.1007/bf00997073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of [6-14C]glucose and [3H]fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.
Collapse
Affiliation(s)
- A L Miller
- Department of Psychiatry, University of Texas Health Science Center, San Antonio 78284-7792
| | | | | |
Collapse
|
11
|
Marie C, Bralet AM, Gueldry S, Bralet J. Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis. Metab Brain Dis 1990; 5:65-75. [PMID: 2385215 DOI: 10.1007/bf01001047] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient brain ischemia of 30-min duration was induced by the four-vessel occlusion technique in normally fed and in 48-hr-fasted rats. Evaluation of brain damage 72 hr after ischemia showed that fasting reduced neuronal necrosis in the striatum, the neocortex, and the lateral part of the CA1 sector of hippocampus. Signs of status spongiosis in the pars reticulata of the substantia nigra were seen in 75% of fed rats and in only 19% of fasted rats. The protective effect was associated with reduction in mortality and in postischemic seizure incidence. The metabolic changes induced by fasting were evaluated before and during ischemia. After 30 min of four-vessel occlusion, fasted rats showed a marked decrease in brain lactate level (14.7 vs 22.5 mumol/g in fed rats; P less than 0.001). The decrease in brain lactate concentration might explain the beneficial effect of fasting by minimizing the neuropathological consequences of lactic acidosis. Several factors may account for lower lactate production during ischemia in fasted rats: hypoglycemia, reduction in preischemic stores of glucose and glycogen, or increased utilization of ketone bodies aiming at reducing the glycolytic rate.
Collapse
Affiliation(s)
- C Marie
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique, Faculté de Pharmacie, Université de Bourgogne, Dijon, France
| | | | | | | |
Collapse
|
12
|
Prenen GH, Go KG, Paans AM, Zuiderveen F, Vaalburg W, Kamman RL, Molenaar WM, Zijlstra S, Elsinga PH, Sebens JB. Positron emission tomographical studies of 1-11C-acetoacetate, 2-18F-fluoro-deoxy-D-glucose, and L-1-11C-tyrosine uptake by cat brain with an experimental lesion. Acta Neurochir (Wien) 1989; 99:166-72. [PMID: 2788974 DOI: 10.1007/bf01402328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In cat brain with a freezing injury, the uptake of 1-11C-acetoacetate (11C-ACAC), 2-18F-fluorodeoxy-D-glucose (18FDG), and L-1-11C-tyrosine (11C-TYR) was monitored by positron emission tomography following intravenous administration of the tracers, at 1 day, and 1-3 weeks after the injury. The development and further course of the cold-induced oedema was monitored by magnetic resonance imaging. In the fresh (1 day old) lesion there was increased uptake of 11C-ACAC, probably due to release of the restrictive influence of the blood-brain barrier upon passage of the substance into brain. The uptake of 18FDG, which normally occurs by carrier-mediated transport at the barrier, was decreased in the fresh lesion, probably as a result of damage of the carrier mechanism. In the 3 week old lesion 18FDG uptake was still reduced, and 11C-ACAC uptake was still increased, although barrier function to Evans blue had recovered. It is suggested, that the increased 11C-ACAC uptake in the chronic lesion bears upon the proliferation of macrophages and reactive glial cells in the lesion. This is supported by the increased uptake of 11C-TYR in the 2 weeks old lesion, while in the fresh lesion 11C-TYR uptake was unchanged.
Collapse
Affiliation(s)
- G H Prenen
- Department of Neurosurgery, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marie C, Bralet AM, Bralet J. Protective action of 1,3-butanediol in cerebral ischemia. A neurologic, histologic, and metabolic study. J Cereb Blood Flow Metab 1987; 7:794-800. [PMID: 3693436 DOI: 10.1038/jcbfm.1987.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1,3-Butanediol (BD) is converted in the body to beta-hydroxybutyrate, and previous studies have shown that hyperketonemia had beneficial effects in experimental models of generalized hypoxia. The aim of this study was to determine if BD would reduce brain damage following cerebral ischemia. A transient forebrain ischemia of 30-min duration was induced by the four-vessel occlusion technique in control and BD-treated rats (25 mmol/kg, i.p.; 30 min prior to ischemia). BD treatment led to significant improvement of neurologic deficit during the 72-h recovery period and reduced neuronal damage in the striatum and cortex but not in the CA1 sector of the hippocampus. Evaluation of cerebral energy metabolism before and at the end of the ischemic period showed that the treatment did not change the preischemic glycolytic and energy metabolite levels but attenuated the ischemia-induced metabolic alterations. It increased energy charge, phosphocreatine, and glucose levels, and reduced lactate accumulation. The decrease in brain lactate concentration might account for the beneficial effects of BD by minimizing the neuropathological consequences of lactic acidosis.
Collapse
Affiliation(s)
- C Marie
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique, Faculté de Pharmacie, Université de Dijon, France
| | | | | |
Collapse
|