1
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Gorte O, Kugel M, Ochsenreither K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:181. [PMID: 33292512 PMCID: PMC7607716 DOI: 10.1186/s13068-020-01824-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biotechnologically produced microbial lipids are of interest as potential alternatives for crude and plant oils. Their lipid profile is similar to plant oils and can therefore be a substitute for the production of biofuels, additives for food and cosmetics industry as well as building blocks for oleochemicals. Commercial microbial lipids production, however, is still not profitable and research on process optimization and cost reduction is required. This study reports on the process optimization using glucose or xylose with the unconventional oleaginous yeast Saitozyma podzolica DSM 27192 aiming to reduce the applied carbon source amount without sacrificing lipid productivity. RESULTS By optimizing the process parameters temperature and pH, lipid productivity was enhanced by 40%. Thereupon, by establishing a two-phase strategy with an initial batch phase and a subsequent fed-batch phase for lipid production in which a constant sugar concentration of about 10 g/L was maintained, resulted in saving of ~ 41% of total glucose and ~ 26% of total xylose. By performing the automated continuous sugar feed the total sugar uptake was improved to ~ 91% for glucose and ~ 92% for xylose and thus, prevented waste of unused carbon source in the cultivation medium. In addition, reduced glucose cultivation resulted in to 28% higher cell growth and 19% increase of lipid titer. By using xylose, the by-product xylonic acid was identified for the first time as by-product of S. podzolica. CONCLUSIONS These findings provide a broad view of different cultivation process strategies with subsequent comparison and evaluation for lipid production with S. podzolica. Additionally, new biotechnological characteristics of this yeast were highlighted regarding the ability to produce valuable organic acids from sustainable and renewable sugars.
Collapse
Affiliation(s)
- Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Fitz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Michaela Kugel
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Fitz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Fitz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Gorte O, Hollenbach R, Papachristou I, Steinweg C, Silve A, Frey W, Syldatk C, Ochsenreither K. Evaluation of Downstream Processing, Extraction, and Quantification Strategies for Single Cell Oil Produced by the Oleaginous Yeasts Saitozyma podzolica DSM 27192 and Apiotrichum porosum DSM 27194. Front Bioeng Biotechnol 2020; 8:355. [PMID: 32391350 PMCID: PMC7193083 DOI: 10.3389/fbioe.2020.00355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Single cell oil (SCO) produced by oleaginous yeasts is considered as a sustainable source for biodiesel and oleochemicals since its production does not compete with food or feed and high yields can be obtained from a wide variety of carbon sources, e.g., acetate or lignocellulose. Downstream processing is still costly preventing the broader application of SCO. Direct transesterification of freeze-dried biomass is widely used for analytical purposes and for biodiesel production but it is energy intensive and, therefore, expensive. Additionally, only fatty acid esters are produced limiting the subsequent applications. The harsh conditions applied during direct esterification might also damage high-value polyunsaturated fatty acids. Unfortunately, universal downstream strategies effective for all yeast species do not exist and methods have to be developed for each yeast species due to differences in cell wall composition. Therefore, the aim of this study was to evaluate three industrially relevant cell disruption methods combined with three extraction systems for the SCO extraction of two novel, unconventional oleaginous yeasts, Saitozyma podzolica DSM 27192 and Apiotrichum porosum DSM 27194, based on cell disruption efficiency, lipid yield, and oil quality. Bead milling (BM) and high pressure homogenization (HPH) were effective cell disruption methods in contrast to sonification. By combining HPH (95% cell disruption efficiency) with ethanol-hexane-extraction 46.9 ± 4.4% lipid/CDW of S. podzolica were obtained which was 2.7 times higher than with the least suitable combination (ultrasound + Folch). A. porosum was less affected by cell disruption attempts. Here, the highest disruption efficiency was 74% after BM and the most efficient lipid recovery method was direct acidic transesterification (27.2 ± 0.5% fatty acid methyl esters/CDW) after freeze drying. The study clearly indicates cell disruption is the decisive step for SCO extraction. At disruption efficiencies of >90%, lipids can be extracted at high yields, whereas at lower cell disruption efficiencies, considerable amounts of lipids will not be accessible for extraction regardless of the solvents used. Furthermore, it was shown that hexane-ethanol which is commonly used for extraction of algal lipids is also highly efficient for yeasts.
Collapse
Affiliation(s)
- Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rebecca Hollenbach
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ioannis Papachristou
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christian Steinweg
- Institute of Process Engineering in Life Science 3: Bioprocess Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Aude Silve
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
4
|
Rolz C, de León R, Mendizábal de Montenegro AL. Co-production of ethanol and biodiesel from sweet sorghum juice in two consecutive fermentation steps. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
5
|
Bušić A, Kundas S, Morzak G, Belskaya H, Marđetko N, Ivančić Šantek M, Komes D, Novak S, Šantek B. Recent Trends in Biodiesel and Biogas Production. Food Technol Biotechnol 2018; 56:152-173. [PMID: 30228791 PMCID: PMC6117991 DOI: 10.17113/ftb.56.02.18.5547] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/26/2018] [Indexed: 02/05/2023] Open
Abstract
Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the 'food or fuel' concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered.
Collapse
Affiliation(s)
- Arijana Bušić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Semjon Kundas
- Belarussian National Technical University, Power Plant Construction and Engineering Services Faculty, Nezavisimosti Ave. 150, BY-220013 Minsk, Belarus
| | - Galina Morzak
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Halina Belskaya
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Nenad Marđetko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Draženka Komes
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Srđan Novak
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Božidar Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Chatterjee S, Mohan SV. Microbial lipid production by Cryptococcus curvatus from vegetable waste hydrolysate. BIORESOURCE TECHNOLOGY 2018; 254:284-289. [PMID: 29413935 DOI: 10.1016/j.biortech.2018.01.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
This study primarily evaluated the effect of pre-treatment on release of reducing sugars (RS) from vegetable waste (VW). Different acids and alkalis viz., H2SO4, HCl, HNO3, H3PO4, NaOH and KOH were evaluated at varied concentration (0.5, 1.0, 1.5 and 2.0%) for pretreatment. The highest RS yield of 472.36 ± 1.89 g/l and 439.13 ± 1.04 g/l was obtained with 1.5% H2SO4 and 2% HCl respectively. Secondly, pre-treated vegetable waste hydrolysates (PT-VWH) were evaluated for yeast fermentation using Cryptococcus curvatus MTCC 2698 for lipid production. Maximum biomass (9.46 ± 0.1 g/l and 8.12 ± 0.1 g/l) and lipid (28.3 ± 0.5% and 26 ± 0.5%) was obtained with 1.5% H2SO4 PT-VWH and 2% HCl PT-VWH respectively. The FAME profiling revealed the predominance of palmitic, stearic, oleic and linoleic acid. The presence of these fatty acids in majority has beneficial effect on the biodiesel quality.
Collapse
Affiliation(s)
- Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (ACSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
7
|
Dahiya S, Kumar AN, Shanthi Sravan J, Chatterjee S, Sarkar O, Mohan SV. Food waste biorefinery: Sustainable strategy for circular bioeconomy. BIORESOURCE TECHNOLOGY 2018; 248:2-12. [PMID: 28823499 DOI: 10.1016/j.biortech.2017.07.176] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 05/21/2023]
Abstract
Enormous quantity of food waste (FW) is becoming a global concern. To address this persistent problem, sustainable interventions with green technologies are essential. FW can be used as potential feedstock in biological processes for the generation of various biobased products along with its remediation. Enabling bioprocesses like acidogenesis, fermentation, methanogenesis, solventogenesis, photosynthesis, oleaginous process, bio-electrogenesis, etc., that yields various products like biofuels, platform chemicals, bioelectricity, biomaterial, biofertilizers, animal feed, etc can be utilized for FW valorisation. Integrating these bioprocesses further enhances the process efficiency and resource recovery sustainably. Adapting biorefinery strategy with integrated approach can lead to the development of circular bioeconomy. The present review highlights the various enabling bioprocesses that can be employed for the generation of energy and various commodity chemicals in an integrated approach addressing sustainability. The waste biorefinery approach for FW needs optimization of the cascade of the individual bioprocesses for the transformation of linear economy to circular bioeconomy.
Collapse
Affiliation(s)
- Shikha Dahiya
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - A Naresh Kumar
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| |
Collapse
|
8
|
Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 2017; 101:3801-3809. [DOI: 10.1007/s00253-017-8157-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
9
|
Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 2016; 100:6103-6117. [PMID: 27209039 PMCID: PMC4916194 DOI: 10.1007/s00253-016-7611-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022]
Abstract
Rhodotorula glutinis is capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of this yeast constitutes sources of microbiological oils, and the whole pool of fatty acids is dominated by oleic, linoleic, and palmitic acid. Due to its composition, the lipids may be useful as a source for the production of the so-called third-generation biodiesel. These yeasts are also capable of synthesizing carotenoids such as β-carotene, torulene, and torularhodin. Due to their health-promoting characteristics, carotenoids are commonly used in the cosmetic, pharmaceutical, and food industries. They are also used as additives in fodders for livestock, fish, and crustaceans. A significant characteristic of R. glutinis is its capability to produce numerous enzymes, in particular, phenylalanine ammonia lyase (PAL). This enzyme is used in the food industry in the production of l-phenylalanine that constitutes the substrate for the synthesis of aspartame—a sweetener commonly used in the food industry.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Agnieszka Kurcz
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Iwona Gientka
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
10
|
Probst KV, Schulte LR, Durrett TP, Rezac ME, Vadlani PV. Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 2015; 36:942-55. [DOI: 10.3109/07388551.2015.1064855] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kyle V. Probst
- IGERT in Biorefining,
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry,
| | | | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
11
|
New biofuel alternatives: integrating waste management and single cell oil production. Int J Mol Sci 2015; 16:9385-405. [PMID: 25918941 PMCID: PMC4463594 DOI: 10.3390/ijms16059385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 02/26/2015] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process.
Collapse
|
12
|
Hernández-Almanza A, Cesar Montanez J, Aguilar-González MA, Martínez-Ávila C, Rodríguez-Herrera R, Aguilar CN. Rhodotorula glutinis as source of pigments and metabolites for food industry. FOOD BIOSCI 2014. [DOI: 10.1016/j.fbio.2013.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Santos CA, Caldeira ML, Lopes da Silva T, Novais JM, Reis A. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture. BIORESOURCE TECHNOLOGY 2013; 138:48-54. [PMID: 23612161 DOI: 10.1016/j.biortech.2013.03.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
In order to produce single-cell oil for biodiesel, a yeast and a microalga were, for the first time, grown in two separate reactors connected by their gas-phases, taking advantage of their complementary nutritional metabolisms, i.e., respiration and photosynthesis. The yeast Rhodosporidium toruloides was used for lipid production, originating a carbon dioxide-enriched outlet gas stream which in turn was used to stimulate the autotrophic growth of Chlorella protothecoides in a vertical-alveolar-panel (VAP) photobioreactor. The microalgal biomass productivity was 0.015 gL(-1)h(-1), and its lipid productivity attained 2.2 mgL(-1)h(-1) when aerated with the outlet gas stream from the yeast fermenter. These values represent an increase of 94% and 87%, respectively, as compared to a control culture aerated with air. The CO2 bio-fixed by the microalgal biomass reached an estimated value of 29 mgL(-1)h(-1) in the VAP receiving the gas stream from the fermenter, a value 1.9 times higher than that measured in the control VAP.
Collapse
Affiliation(s)
- C A Santos
- LNEG, U. Bioenergia, edificio F, Estrada do Paço do Lumiar, 22, 1649-038 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
14
|
Braunwald T, Schwemmlein L, Graeff-Hönninger S, French WT, Hernandez R, Holmes WE, Claupein W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 2013; 97:6581-8. [PMID: 23728238 DOI: 10.1007/s00253-013-5005-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 11/25/2022]
Abstract
Due to the increasing demand for sustainable biofuels, microbial oils as feedstock for the transesterification into biodiesel have gained scientific and commercial interest. Also, microbial carotenoids have a considerable market potential as natural colorants. The carbon to nitrogen (C/N) ratio of the respective cultivation media is one of the most important parameters that influence the production of microbial lipids and carotenoids. Thus, in the present experiment, the influence of different C/N ratios, initial glucose loadings, and ammonium concentrations of the cultivation medium on microbial cell growth and lipid and carotenoid production by the oleaginous red yeast Rhodotorula glutinis has been assessed. As a general trend, both lipid and carotenoid production increased at high C/N ratios. It was shown that not only the final C/N ratio but also the respectively applied initial carbon and nitrogen contents influenced the observed parameters. The lipid yield was not affected by different ammonium contents, while the carotenoid production significantly decreased both at low and high levels of ammonium supply. A glucose-based increase from C/N 70 to 120 did not lead to an increased lipid production, while carotenoid synthesis was positively affected. Generally, it can be asserted that lipid and carotenoid synthesis are stimulated at higher C/N ratios.
Collapse
Affiliation(s)
- Teresa Braunwald
- Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Schneider T, Rempp T, Graeff-Hönninger S, French WT, Hernandez R, Claupein W. Utilization of Soluble Starch by Oleaginous Red Yeast <i>Rhodotorula glutinis</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jsbs.2013.31007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Screening of Industrial Wastewaters as Feedstock for the Microbial Production of Oils for Biodiesel Production and High-Quality Pigments. JOURNAL OF COMBUSTION 2012. [DOI: 10.1155/2012/153410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeastRhodotorula glutiniswas tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-value by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. The screening of feedstocks should be extended to other wastewaters.
Collapse
|
17
|
Xia C, Zhang J, Zhang W, Hu B. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:15. [PMID: 21635739 PMCID: PMC3127746 DOI: 10.1186/1754-6834-4-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 06/02/2011] [Indexed: 05/09/2023]
Abstract
The recent energy crisis has triggered significant attention on the microbial synthesis of lipids, which comprise the raw material for biodiesel production. Microbial oil accumulation with filamentous fungi has great potential because filamentous fungi can form pellets during cell growth, and these pellets are much easier to harvest from cell broth. This paper focuses on the cell pelletization process of the oleaginous Mucor circinelloides. We have studied the effect of various cultural conditions on pelletized cell growth and lipid accumulation. This study is the first to report that pH adjustment during cell growth plays a key role in pellet formation of M. circinelloides and describes a handy method by which to induce cell pelletization in submerged fungal cultivation. Our study reveals that cell growth and lipid production are not significantly affected by pelletization and that lipid accumulation is triggered at stressed conditions, such as a high carbon-to-nitrogen ratio and high temperature.
Collapse
Affiliation(s)
- Chunjie Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, MN, USA
| | - Jianguo Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, MN, USA
| | - Weidong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Bo Hu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 316 BAE, 1390 Eckles Avenue, St. Paul, MN 55108-6005, USA
| |
Collapse
|
18
|
Yu X, Zheng Y, Dorgan KM, Chen S. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. BIORESOURCE TECHNOLOGY 2011; 102:6134-40. [PMID: 21463940 DOI: 10.1016/j.biortech.2011.02.081] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 05/04/2023]
Abstract
This paper explores the use of the hydrolysate from the dilute sulfuric acid pretreatment of wheat straw for microbial oil production. The resulting hydrolysate was composed of pentoses (24.3g/L) and hexoses (4.9 g/L), along with some other degradation products, such as acetic acid, furfural, and hydroxymethylfurfural (HMF). Five oleaginous yeast strains, Cryptococcus curvatus, Rhodotorula glutinis, Rhodosporidium toruloides, Lipomyces starkeyi, and Yarrowia lipolytica, were evaluated by using this hydrolysate as substrates. The results showed that all of these strains could use the detoxified hydrolysate to produce lipids while except R. toruloides non-detoxified hydrolysate could also be used for the growth of all of the selective yeast strains. C. curvatus showed the highest lipid concentrations in medium on both the detoxified (4.2g/L) and non-detoxified (5.8 g/L) hydrolysates. And the inhibitory effect studies on C. curvatus indicated HMF had insignificant impacts at a concentration of up to 3g/L while furfural inhibited cell growth and lipid content by 72.0% and 62.0% at 1g/L, respectively. Our work demonstrates that lipid production is a promising alternative to utilize hemicellulosic sugars obtained during pretreatment of lignocellulosic materials.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
| | | | | | | |
Collapse
|
19
|
Meeuwse P, Tramper J, Rinzema A. Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: Validation of the chemostat model using yeast culture data from literature. Bioprocess Biosyst Eng 2011; 34:951-61. [PMID: 21516366 PMCID: PMC3171657 DOI: 10.1007/s00449-011-0546-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
Abstract
A model that predicts cell growth, lipid accumulation and substrate consumption of oleaginous fungi in chemostat cultures (Meeuwse et al. in Bioproc Biosyst Eng. doi:10.1007/s00449-011-0545-8, 2011) was validated using 12 published data sets for chemostat cultures of oleaginous yeasts and one published data set for a poly-hydroxyalkanoate accumulating bacterial species. The model could describe all data sets well with only minor modifications that do not affect the key assumptions, i.e. (1) oleaginous yeasts and fungi give the highest priority to C-source utilization for maintenance, second priority to growth and third priority to lipid accumulation, and (2) oleaginous yeasts and fungi have a growth rate independent maximum specific lipid production rate. The analysis of all data showed that the maximum specific lipid production rate is in most cases very close to the specific production rate of membrane and other functional lipids for cells growing at their maximum specific growth rate. The limiting factor suggested by Ykema et al. (in Biotechnol Bioeng 34:1268–1276, 1989), i.e. the maximum glucose uptake rate, did not give good predictions of the maximum lipid production rate.
Collapse
Affiliation(s)
- Petra Meeuwse
- Bioprocess Engineering, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | |
Collapse
|
20
|
Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 2010; 37:1271-87. [DOI: 10.1007/s10295-010-0884-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/18/2010] [Indexed: 11/30/2022]
|