1
|
Schenck H, van Craenenbroeck C, van Kuijk S, Gommer E, Veldeman M, Temel Y, Aries M, Mess W, Haeren R. Systematic review and meta-analysis of transcranial doppler biomarkers for the prediction of delayed cerebral ischemia following subarachnoid hemorrhage. J Cereb Blood Flow Metab 2025; 45:1031-1047. [PMID: 40110695 PMCID: PMC11926817 DOI: 10.1177/0271678x251313746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 03/22/2025]
Abstract
Delayed cerebral ischemia (DCI) following an aneurysmal subarachnoid hemorrhage (aSAH) significantly impacts mortality, morbidity, and healthcare costs. This study assessed the diagnostic accuracy of Transcranial Doppler (TCD)-derived biomarkers for predicting DCI via a systematic review and meta-analysis. Included studies had to correctly define DCI and report data on sensitivity, specificity, positive predictive value, and negative predictive value. Univariate or bivariate analyses with a random effects model were used, and risk of bias was evaluated with the Quality Assessment of Diagnostic Accuracy Studies. From 23 eligible articles (n = 2371 patients), three biomarker categories were identified: cerebral blood flow velocities (CBFV), cerebral autoregulation, and microembolic signals (MES). The highest sensitivity (0.86, 95% CI 0.71-0.94) and specificity (0.75, 95% CI 0.52-0.94) for DCI prediction were achieved with a mean CBFV of 120 cm/s combined with a Lindegaard ratio. The transient hyperemic response test showed the best performance among autoregulatory biomarkers with a sensitivity of 0.88, (95% CI 0.54-0.98) and specificity of 0.82 (95% CI 0.52-0.94). MES were less effective predictors. Combining CBFV with autoregulatory biomarkers enhanced TCD's predictive value. High heterogeneity and risk of bias were noted, indicating the need for a standardized TCD approach for improved DCI evaluation.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Céline van Craenenbroeck
- Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Sander van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Erik Gommer
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Michael Veldeman
- Department of Neurosurgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Marcel Aries
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Werner Mess
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Giannoni R, Martinez E, Gonzalez IS, Garnica CR, Giannoni FF, de Bruno MP, Masevicius FD. Differences in cerebral blood flow patterns assessed by transcranial doppler in patients with severe pre-eclampsia and eclampsia. Int J Gynaecol Obstet 2025. [PMID: 40384472 DOI: 10.1002/ijgo.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE To investigate cerebral perfusion variables derived from transcranial Doppler (TCD) in patients with severe hypertensive disorders of pregnancy and determine their association with the development of eclampsia. METHODS A cross-sectional study was conducted in an intensive care unit in Argentina. The study included 31 patients with severe pre-eclampsia (sPE), 35 with eclampsia (E), and 20 healthy pregnancies (HP). Doppler indices from the middle cerebral artery (MCA), anterior cerebral artery (ACA), posterior cerebral artery (PCA), and basilar artery (BA) were compared among the groups. RESULTS Compared to HP, patients with sPE and E exhibited higher values of cerebral flow index (CFI) (48 [42-57] and 51 [41-68] vs 34 [28-44], P = 0.001), higher cerebral perfusion pressure (CPP) (69 mmHg [56-77] and 68 mmHg [54-92] vs 49 mmHg [42-73], P = 0.044), and increased cerebral blood flow velocities (CBFV) with lower resistance in most examined territories. Patients with E demonstrated significantly higher CBFV values in MCA, PCA, and BA compared to those with sPE, along with a significant decrease in resistance index (RI) of the BA (P < 0.05). In multivariate analysis, the RI of the BA was the only Doppler variable independently associated with E. CONCLUSION Increased cerebral flow velocities and lower resistance are characteristic findings in patients with sPE and E. While these changes are evident across all cerebral vascular territories, significant alterations in the Doppler indices of the basilar artery may provide insights into the mechanisms underlying the development of eclampsia.
Collapse
Affiliation(s)
- Roberto Giannoni
- Hospital Ramón Carrillo Regional, Santiago del Estero, Argentina
| | - Ezequiel Martinez
- Hospital Juan A Fernández, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ivana S Gonzalez
- Hospital Ramón Carrillo Regional, Santiago del Estero, Argentina
| | - Carlos R Garnica
- Hospital Ramón Carrillo Regional, Santiago del Estero, Argentina
| | | | - Maria Peral de Bruno
- Departamento de Morfofisiología, Instituto de Fisiología, Facultad de Medicina, UNT, INSIBO-CONICET, San Miguel del Tucuman, Argentina
| | - Fabio D Masevicius
- Sanatorio Otamendi, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Nguyen DN, Huyghens L, Nguyen TM, Diltoer M, Jonckheer J, Cools W, Segers L, Schiettecatte J, Vincent JL. Alterations in Regional Brain Microcirculation in Patients with Sepsis: A Prospective Study Using Contrast-Enhanced Brain Ultrasound. Neurocrit Care 2025; 42:428-439. [PMID: 39313698 DOI: 10.1007/s12028-024-02117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Alterations in regional brain microcirculation have not been well studied in patients with sepsis. Regional brain microcirculation can be studied using contrast-enhanced brain ultrasound (CEUS) with microbubble administration. METHODS CEUS was used to assess alterations in regional brain microcirculation on 3 consecutive days in 58 patients with sepsis and within 24 h of intensive care unit admission in 10 aged-matched nonseptic postoperative patients. Time-intensity perfusion curve variables (time-to-peak and peak intensity) were measured in different regions of interest of the brain parenchyma. The mean arterial pressure, cardiac index (using transthoracic echocardiography), global cerebral blood flow (using echo-color Doppler of the carotid and vertebral arteries), mean flow velocities of the middle cerebral arteries, and brain autoregulation (using transcranial echo-color Doppler) were measured simultaneously. The presence of structural brain injury in patients with sepsis was confirmed on computed tomography imaging, and encephalopathy, including coma and delirium, was evaluated using the Glasgow Coma Scale and the Confusion Assessment Method in the Intensive Care Unit. RESULTS Of the 58 patients with sepsis, 42 (72%) developed acute encephalopathy and 11 (19%) had some form of structural brain injury. Brain autoregulation was impaired in 23 (40%) of the patients with sepsis. Brain microcirculation alterations were observed in the left lentiform nucleus and left white matter of the temporoparietal region of the middle cerebral artery in the sepsis nonsurvivors but not in the survivors or postoperative patients. The alterations were characterized by prolonged time-to-peak (p < 0.01) and decreased peak intensity (p < 0.01) on the time-intensity perfusion curve. Prolonged time-to-peak but not decreased peak intensity was independently associated with worse outcome (p = 0.03) but not with the development of encephalopathy (p = 0.77). CONCLUSIONS Alterations in regional brain microcirculation are present in critically ill patients with sepsis and are associated with poor outcome. Trial registration Registered retrospectively on December 19, 2019.
Collapse
Affiliation(s)
- Duc Nam Nguyen
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Luc Huyghens
- Brain Resuscitation in Neurosciences Research Group, Faculty of Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Truc Mai Nguyen
- Department of Geriatrics, University Hospital Vaudois, Lausanne, Switzerland
| | - Marc Diltoer
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Joop Jonckheer
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Wilfried Cools
- Department of Biostatistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lotte Segers
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Johan Schiettecatte
- Department of Immunochemistry, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Lamsal R, Rath GP, Dube SK, Roy H, Mishra S. Effect of Dexmedetomidine on Dynamic Cerebral Autoregulation in Patients Undergoing Supratentorial Tumor Surgery. Neurol India 2025; 73:280-285. [PMID: 40176217 DOI: 10.4103/neurol-india.neurol-india-d-24-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/09/2024] [Indexed: 04/04/2025]
Abstract
BACKGROUND Dexmedetomidine is gaining popularity in neuroanesthesia, but its effect on cerebral autoregulation (CA) is unclear. It is important to maintain CA in patients undergoing surgery for intracranial lesions. Previous studies have not examined the effect of dexmedetomidine on CA in anesthetized patients who have pre-existing intracranial pathology. OBJECTIVE The study was done to assess the effect of dexmedetomidine on dynamic CA (dCA) in patients with supratentorial tumors under sevoflurane anesthesia. METHODS AND MATERIAL Forty American Society of Anesthesiologists physical status 1 and 2 patients with supratentorial tumors were randomized to receive either a bolus of dexmedetomidine (1 µg/kg over 10 min) or a matching placebo. The middle cerebral artery (MCA) was insonated using a handheld transcranial Doppler probe and used to calculate the transient hyperemic response ratio, which is the surrogate measure of dCA. This test was repeated before and after administration of the test drug. Variables that can influence dCA like end-tidal carbon dioxide, blood pressure, and depth of anesthesia were tightly controlled throughout the conduct of Doppler studies. RESULTS AND CONCLUSION The MCA flow velocity was comparable in both groups after administration of the test drug (58.05 ± 7.41 cm/s vs 59.95 ± 8.99 cm/s, P = 0.47). The transient hyperemic response ratio was also similar (1.30 ± 0.11 vs. 1.26 ± 0.07, P = 0.22). In anesthetized patients with supratentorial tumors, a bolus dose of dexmedetomidine does not affect dCA.
Collapse
Affiliation(s)
- Ritesh Lamsal
- Department of Anaesthesiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Girija P Rath
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Surya K Dube
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Hirok Roy
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Shashwat Mishra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Donati PA, Tarragona L, Zaccagnini AS, Nigro NM, Díaz AJ, Fuensalida SE, Sández Cordero I, Espiñeira IM, Otero PE. Evaluation of cerebral autoregulation in dogs via transcranial color-coded duplex sonography and transient hyperemia testing. J Vet Emerg Crit Care (San Antonio) 2024; 34:554-559. [PMID: 39494833 DOI: 10.1111/vec.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 08/13/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVE To evaluate the changes in flow velocities of the middle cerebral artery before and after a carotid compression maneuver using transcranial color-coded duplex sonography (TCCD) in healthy anesthetized dogs under mechanical ventilation. DESIGN Prospective study. SETTING University teaching hospital. ANIMALS Eleven healthy adult dogs. INTERVENTIONS A 5-second carotid occlusion maneuver was performed to evaluate cerebral autoregulation (CA). MEASUREMENTS AND MAIN RESULTS After 10 minutes of stable anesthesia, the middle cerebral artery was evaluated by TCCD. Dogs were positioned in sternal recumbency with the head raised to the level of the phlebostatic axis. The systolic peak velocity (Vp) was measured using pulsed Doppler mode. CA was evaluated through the transient hyperemia test (THT), which assesses changes in the Vp after a 5-second transient compression of the ipsilateral common carotid artery and is expressed as the ratio between the Vp flow before and after carotid compression. The Vp before and after carotid occlusion was compared using the Wilcoxon signed-rank test. The median Vp of the middle cerebral artery after the carotid compression maneuver was significantly higher than the median Vp before compression (median [interquartile range, IQR]: 47.7 cm/s [34.3] vs 64.1 cm/s [24.4]; P = 0.003). The median THT obtained was 1.20 (IQR: 0.37). CONCLUSIONS The current study demonstrated a significant increase in the Vp of the middle cerebral artery after a 5-second temporary occlusion of the ipsilateral carotid artery in healthy anesthetized dogs under mechanical ventilation. These findings suggest that the noninvasive TCCD methodology could be valuable for assessing CA in dogs. Additional studies using this technique in neurocritical animals are required to confirm its usefulness.
Collapse
Affiliation(s)
- Pablo A Donati
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lisa Tarragona
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea S Zaccagnini
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nestor M Nigro
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo J Díaz
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago E Fuensalida
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Ignacio M Espiñeira
- Department of Clinical Science, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo E Otero
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Magyar-Stang R, Pál H, Csányi B, Gaál A, Mihály Z, Czinege Z, Csipo T, Ungvari Z, Sótonyi P, Varga A, Horváth T, Bereczki D, Koller A, Debreczeni R. Assessment of cerebral autoregulatory function and inter-hemispheric blood flow in older adults with internal carotid artery stenosis using transcranial Doppler sonography-based measurement of transient hyperemic response after carotid artery compression. GeroScience 2023; 45:3333-3357. [PMID: 37599343 PMCID: PMC10643517 DOI: 10.1007/s11357-023-00896-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023] Open
Abstract
Unhealthy vascular aging promotes atherogenesis, which may lead to significant internal carotid artery stenosis (CAS) in 5 to 7.5% of older adults. The pathogenic factors that promote accelerated vascular aging and CAS also affect the downstream portion of the cerebral microcirculation in these patients. Primary treatments of significant CAS are eversion endarterectomy or endarterectomy with patch plasty. Factors that determine adequate hemodynamic compensation and thereby the clinical consequences of CAS as well as medical and surgical complications of carotid reconstruction surgery likely involve the anatomy of the circle of Willis (CoW), the magnitude of compensatory inter-hemispheric blood flow, and the effectiveness of cerebral microcirculatory blood flow autoregulation. This study aimed to test two hypotheses based on this theory. First, we hypothesized that patients with symptomatic and asymptomatic CAS would exhibit differences in autoregulatory function and inter-hemispheric blood flow. Second, we predicted that anatomically compromised CoW would associate with impaired inter-hemispheric blood flow compensation. We enrolled older adults with symptomatic or asymptomatic internal CAS (>70% NASCET criteria; n = 46) and assessed CoW integrity by CT angiography. We evaluated transient hyperemic responses in the middle cerebral arteries (MCA) after common carotid artery compression (CCC; 10 s) by transcranial Doppler sonography (TCD). We compared parameters reflecting autoregulatory function (e.g., transient hyperemic response ratio [THRR], return to baseline time [RTB], changes of vascular resistance) and inter-hemispheric blood flow (residual blood flow velocity). Our findings revealed that CAS was associated with impaired cerebral vascular reactivity. However, we did not observe significant differences in autoregulatory function or inter-hemispheric blood flow between patients with symptomatic and asymptomatic CAS. Moreover, anatomically compromised CoW did not significantly affect these parameters. Notably, we observed an inverse correlation between RTB and THRR, and 49% of CAS patients exhibited a delayed THRR, which associated with decreased inter-hemispheric blood flow. Future studies should investigate how TCD-based evaluation of autoregulatory function and inter-hemispheric blood flow can be used to optimize surgical techniques and patient selection for internal carotid artery revascularization.
Collapse
Affiliation(s)
- Rita Magyar-Stang
- Department of Neurology, Semmelweis University, Budapest, Hungary.
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.
| | - Hanga Pál
- Department of Neurology, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Borbála Csányi
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Gaál
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Mihály
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Zsófia Czinege
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Andrea Varga
- Department of Diagnostic Radiology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Horváth
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology & Physiology, Faculty of Health Sciences, and Translational Medicine Institute, Faculty of Medicine, and ELKH-SE, Cerebrovascular and Neurocognitive Disorders Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
7
|
Magyar-Stang R, István L, Pál H, Csányi B, Gaál A, Mihály Z, Czinege Z, Sótonyi P, Tamás H, Koller A, Bereczki D, Kovács I, Debreczeni R. Impaired cerebrovascular reactivity correlates with reduced retinal vessel density in patients with carotid artery stenosis: Cross-sectional, single center study. PLoS One 2023; 18:e0291521. [PMID: 37708176 PMCID: PMC10501613 DOI: 10.1371/journal.pone.0291521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The cerebral and retinal circulation systems are developmentally, anatomically, and physiologically interconnected. Thus, we hypothesized that hypoperfusion due to atherosclerotic stenosis of the internal carotid artery (ICA) can result in disturbances of both cerebral and retinal microcirculations. We aimed to characterize parameters indicating cerebrovascular reactivity (CVR) and retinal microvascular density in patients with ICA stenosis, and assess if there is correlation between them. METHODS In this cross-sectional study the middle cerebral artery (MCA) blood flow velocity was measured by transcranial Doppler (TCD) and, simultaneously, continuous non-invasive arterial blood pressure measurement was performed on the radial artery by applanation tonometry. CVR was assessed based on the response to the common carotid artery compression (CCC) test. The transient hyperemic response ratio (THRR) and cerebral arterial resistance transient hyperemic response ratio (CAR-THRR) were calculated. Optical coherence tomography angiography (OCTA) was used to determine vessel density (VD) on the papilla whole image for all (VDP-WIall) and for small vessels (VDP-WIsmall). The same was done in the peripapillary region: all (VDPPall), and small (VDPPsmall) vessels. The VD of superficial (VDMspf) and deep (VDMdeep) macula was also determined. Significance was accepted when p<0.05. RESULTS Twenty-four ICA stenotic patients were evaluated. Both CVR and retinal VD were characterized. There was a significant, negative correlation between CAR-THRR (median = -0.40) and VDPPsmall vessels (median = 52%), as well as between VDPPall vessels (median = 58%), and similar correlation between CAR-THRR and VDP-WIsmall (median = 49.5%) and between VDP-WIall (median = 55%). CONCLUSION The significant correlation between impaired cerebrovascular reactivity and retinal vessel density in patients with ICA stenosis suggests a common mechanism of action. We propose that the combined use of these diagnostic tools (TCD and OCTA) helps to better identify patients with increased ischemic or other cerebrovascular risks.
Collapse
Affiliation(s)
- Rita Magyar-Stang
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Lilla István
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Hanga Pál
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Borbála Csányi
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Gaál
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Mihály
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Zsófia Czinege
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Horváth Tamás
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Akos Koller
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology&Physiology, Faculty of Health Sciences, and Translational Medicine Institute, Faculty of Medicine, and ELKH-SE, Cerebrovascular and Neurocognitive Disorders Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY, United States of America
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, United States of America
- Department of Clinical Ophthalmology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
8
|
Gomez A, Sainbhi AS, Stein KY, Vakitbilir N, Froese L, Zeiler FA. Statistical properties of cerebral near infrared and intracranial pressure-based cerebrovascular reactivity metrics in moderate and severe neural injury: a machine learning and time-series analysis. Intensive Care Med Exp 2023; 11:57. [PMID: 37635181 PMCID: PMC10460757 DOI: 10.1186/s40635-023-00541-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Cerebrovascular reactivity has been identified as a key contributor to secondary injury following traumatic brain injury (TBI). Prevalent intracranial pressure (ICP) based indices of cerebrovascular reactivity are limited by their invasive nature and poor spatial resolution. Fortunately, interest has been building around near infrared spectroscopy (NIRS) based measures of cerebrovascular reactivity that utilize regional cerebral oxygen saturation (rSO2) as a surrogate for pulsatile cerebral blood volume (CBV). In this study, the relationship between ICP- and rSO2-based indices of cerebrovascular reactivity, in a cohort of critically ill TBI patients, is explored using classical machine learning clustering techniques and multivariate time-series analysis. METHODS High-resolution physiologic data were collected in a cohort of adult moderate to severe TBI patients at a single quaternary care site. From this data both ICP- and rSO2-based indices of cerebrovascular reactivity were derived. Utilizing agglomerative hierarchical clustering and principal component analysis, the relationship between these indices in higher dimensional physiologic space was examined. Additionally, using vector autoregressive modeling, the response of change in ICP and rSO2 (ΔICP and ΔrSO2, respectively) to an impulse in change in arterial blood pressure (ΔABP) was also examined for similarities. RESULTS A total of 83 patients with 428,775 min of unique and complete physiologic data were obtained. Through agglomerative hierarchical clustering and principal component analysis, there was higher order clustering between rSO2- and ICP-based indices, separate from other physiologic parameters. Additionally, modeled responses of ΔICP and ΔrSO2 to impulses in ΔABP were similar, indicating that ΔrSO2 may be a valid surrogate for pulsatile CBV. CONCLUSIONS rSO2- and ICP-based indices of cerebrovascular reactivity relate to one another in higher dimensional physiologic space. ΔICP and ΔrSO2 behave similar in modeled responses to impulses in ΔABP. This work strengthens the body of evidence supporting the similarities between ICP-based and rSO2-based indices of cerebrovascular reactivity and opens the door to cerebrovascular reactivity monitoring in settings where invasive ICP monitoring is not feasible.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Kataria K, Panda NB, Luthra A, Mahajan S, Bhagat H, Chauhan R, Soni S, Jangra K, Kaloria N, Paul S, Bloria S, Gupta S, Chhabra R. Assessment of impaired cerebral autoregulation and its correlation with neurological outcome in aneurysmal subarachnoid hemorrhage: A prospective and observational study. Surg Neurol Int 2023; 14:290. [PMID: 37680917 PMCID: PMC10481860 DOI: 10.25259/sni_25_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Background Cerebral autoregulation (CA) is crucial for the maintenance of cerebral homeostasis. It can be assessed by measuring transient hyperemic response ratio (THRR) using transcranial Doppler (TCD). We aimed at assessing the incidence of impaired CA (ICA) and its correlation with the neurological outcome in patients with aneurysmal subarachnoid hemorrhage (aSAH). Methods One hundred consecutive patients with aSAH scheduled for aneurysmal clipping were enrolled in this prospective and observational study. Preoperative and consecutive 5-day postoperative THRR measurements were taken. Primary objective of the study was to detect the incidence of ICA and its correlation with vasospasm (VS) postclipping, and neurological outcome at discharge and 1, 3, and 12 months was secondary objectives. Results ICA (THRR < 1.09) was observed in 69 patients preoperatively, 74 patients on the 1st and 2nd postoperative day, 76 patients on 3rd postoperative day, and 78 patients on 4th and 5th postoperative day. Significant VS was seen in 13.4% and 61.5% of patients with intact THRR and deranged THRR, respectively (P < 0.000). Out of 78 patients who had ICA, 42 patients (53.8%) at discharge, 60 patients (76.9%) at 1 month, 54 patients (69.2%) at 3 month, and 55 patients (70.5%) at 12 months had unfavorable neurological outcome significantly more than those with preserved CA. Conclusion Incidence of ICA assessed in aSAH patients varies from 69% to 78% in the perioperative period. The deranged CA was associated with significantly poor neurological outcome. Therefore, CA assessment using TCD-based THRR provides a simple, noninvasive bedside approach for predicting neurological outcome in aSAH.
Collapse
Affiliation(s)
- Ketan Kataria
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Centre, Mumbai, India
| | - Nidhi Bidyut Panda
- Department of Anaesthesia and Intensive Care, Division of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Luthra
- Department of Anaesthesia and Intensive Care, Division of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalvi Mahajan
- Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Hemant Bhagat
- Department of Anaesthesia and Intensive Care, Division of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajeev Chauhan
- Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shiv Soni
- Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kiran Jangra
- Department of Anaesthesia and Intensive Care, Division of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Narender Kaloria
- Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shamik Paul
- Department of Anaesthesiology and Critical Care, Armed Forces Medical College (AFMC), Pune, India
| | - Summit Bloria
- Department of Anaesthesia and Intensive Care, Division of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailesh Gupta
- Department of Anaesthesia and Intensive Care, Division of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Chhabra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Sainbhi AS, Vakitbilir N, Gomez A, Stein KY, Froese L, Zeiler FA. Non-Invasive Mapping of Cerebral Autoregulation Using Near-Infrared Spectroscopy: A Study Protocol. Methods Protoc 2023; 6:58. [PMID: 37368002 DOI: 10.3390/mps6030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The ability of cerebral vessels to maintain a fairly constant cerebral blood flow is referred to as cerebral autoregulation (CA). Using near-infrared spectroscopy (NIRS) paired with arterial blood pressure (ABP) monitoring, continuous CA can be assessed non-invasively. Recent advances in NIRS technology can help improve the understanding of continuously assessed CA in humans with high spatial and temporal resolutions. We describe a study protocol for creating a new wearable and portable imaging system that derives CA maps of the entire brain with high sampling rates at each point. The first objective is to evaluate the CA mapping system's performance during various perturbations using a block-trial design in 50 healthy volunteers. The second objective is to explore the impact of age and sex on regional disparities in CA using static recording and perturbation testing in 200 healthy volunteers. Using entirely non-invasive NIRS and ABP systems, we hope to prove the feasibility of deriving CA maps of the entire brain with high spatial and temporal resolutions. The development of this imaging system could potentially revolutionize the way we monitor brain physiology in humans since it would allow for an entirely non-invasive continuous assessment of regional differences in CA and improve our understanding of the impact of the aging process on cerebral vessel function.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Frederick A Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Su R, Zhou J, Zhu N, Chen X, Zhou JX, Li HL. Efficacy and safety of remifentanil dose titration to correct the spontaneous hyperventilation in aneurysmal subarachnoid haemorrhage: protocol and statistical analysis for a prospective physiological study. BMJ Open 2022; 12:e064064. [PMID: 36351728 PMCID: PMC9664281 DOI: 10.1136/bmjopen-2022-064064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Spontaneous hyperventilation (SHV) is common in aneurysmal subarachnoid haemorrhage (aSAH). The reduction in arterial partial pressure of carbon dioxide (PaCO2) may change the brain physiology, such as haemodynamics, oxygenation, metabolism and may lead to secondary brain injury. However, how to correct SHV safely and effectively in patients with aSAH has not been well investigated. The aim of this study is to investigate the efficacy and safety of remifentanil dose titration to correct hyperventilation in aSAH, as well as the effect of changes in PaCO2 on cerebral blood flow (CBF). METHODS AND ANALYSIS This study is a prospective, single-centre, physiological study in patients with aSAH. The patients who were mechanically ventilated and who meet with SHV (tachypnoea combined with PaCO2 <35 mm Hg and pH >7.45) will be enrolled. The remifentanil will be titrated to correct the SHV. The predetermined initial dose of remifentanil is 0.02 μg/kg/min and will be maintained for 30 min, and PaCO2 and CBF will be measured. After that, the dose of remifentanil will be sequentially increased to 0.04, 0.06, and 0.08 μg/kg/min, and the measurements for PaCO2 and CBF will be repeated 30 min after each dose adjustment and will be compared with their baseline values. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board of Beijing Tiantan Hospital, Capital Medical University (KY 2021-006-02) and has been registered at ClinicalTrials.gov. The results of this study will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04940273.
Collapse
Affiliation(s)
- Rui Su
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Jianfang Zhou
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Ning Zhu
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Xiaolin Chen
- Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Jian-Xin Zhou
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
- Capital Medical University, Department of Critical Care Medicine, Beijing Shijitan Hospital, Beijing, Beijing, China
| | - Hong-Liang Li
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| |
Collapse
|
12
|
D'Andrea A, Fabiani D, Cante L, Caputo A, Sabatella F, Riegler L, Alfano G, Russo V. Transcranial Doppler ultrasound: Clinical applications from neurological to cardiological setting. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1212-1223. [PMID: 36218211 DOI: 10.1002/jcu.23344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Transcranial Doppler (TCD) ultrasonography is a rapid, noninvasive, real-time, and low-cost imaging technique. It is performed with a low-frequency (2 MHz) probe in order to evaluate the cerebral blood flow (CBF) and its pathological alterations, through specific acoustic windows. In the recent years, TCD use has been expanded across many clinical settings. Actually, the most widespread indication for TCD exam is represented by the diagnosis of paradoxical embolism, due to patent foramen ovale, in young patients with cryptogenic stroke. In addition, TCD has also found useful applications in neurological care setting, including the following: cerebral vasospasm following acute subarachnoid hemorrhage, brain trauma, cerebrovascular atherosclerosis, and evaluation of CBF and cerebral autoregulation after an ischemic stroke event. The present review aimed to describe the most recent evidences of TCD utilization from neurological to cardiological setting.
Collapse
Affiliation(s)
- Antonello D'Andrea
- Cardiology Unit, Umberto I Hospital, University of Campania "Luigi Vanvitelli", Nocera Inferiore, Italy
| | - Dario Fabiani
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Luigi Cante
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Adriano Caputo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Francesco Sabatella
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Lucia Riegler
- Cardiology Unit, Umberto I Hospital, University of Campania "Luigi Vanvitelli", Nocera Inferiore, Italy
| | - Gabriele Alfano
- Cardiology Unit, Umberto I Hospital, University of Campania "Luigi Vanvitelli", Nocera Inferiore, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| |
Collapse
|
13
|
Crippa IA, Pelosi P, Quispe-Cornejo AA, Messina A, Corradi F, Taccone FS, Robba C. Automated Pupillometry as an Assessment Tool for Intracranial Hemodynamics in Septic Patients. Cells 2022; 11:cells11142206. [PMID: 35883649 PMCID: PMC9319569 DOI: 10.3390/cells11142206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Impaired cerebral autoregulation (CA) may increase the risk of brain hypoperfusion in septic patients. Sepsis dysregulates the autonomic nervous system (ANS), potentially affecting CA. ANS function can be assessed through the pupillary light reflex (PLR). The aim of this prospective, observational study was to investigate the association between CA and PLR in adult septic patients. Transcranial Doppler was used to assess CA and calculate estimated cerebral perfusion pressure (eCPP) and intracranial pressure (eICP). An automated pupillometer (AP) was used to record Neurological Pupil Index (NPi), constriction (CV) and dilation (DV) velocities. The primary outcome was the relationship between AP-derived variables with CA; the secondary outcome was the association between AP-derived variables with eCPP and/or eICP. Among 40 included patients, 21 (53%) had impaired CA, 22 (55%) had low eCPP (<60 mmHg) and 15 (38%) had high eICP (>16 mmHg). DV was lower in patients with impaired CA compared to others; DV predicted impaired CA with area under the curve, AUROC= 0.78 [95% Confidence Interval, CI 0.63−0.94]; DV < 2.2 mm/s had sensitivity 85% and specificity 69% for impaired CA. Patients with low eCPP or high eICP had lower NPi values than others. NPi was correlated with eCPP (r = 0.77, p < 0.01) and eICP (r = −0.87, p < 0.01). Automated pupillometry may play a role to assess brain hemodynamics in septic patients.
Collapse
Affiliation(s)
- Ilaria Alice Crippa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.A.Q.-C.); (F.S.T.)
- Department of Anesthesiology and Intensive Care, San Marco Hospital, San Donato Group, 24040 Zingonia, Italy
- Correspondence:
| | - Paolo Pelosi
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (C.R.)
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Armin Alvaro Quispe-Cornejo
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.A.Q.-C.); (F.S.T.)
| | - Antonio Messina
- Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy;
| | - Francesco Corradi
- Department of Surgical Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.A.Q.-C.); (F.S.T.)
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (C.R.)
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
14
|
Transcranial Doppler Ultrasound, a Review for the Pediatric Intensivist. CHILDREN 2022; 9:children9050727. [PMID: 35626904 PMCID: PMC9171581 DOI: 10.3390/children9050727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
The use of transcranial Doppler ultrasound (TCD) is increasing in frequency in the pediatric intensive care unit. This review highlights some of the pertinent TCD applications for the pediatric intensivist, including evaluation of cerebral hemodynamics, autoregulation, non-invasive cerebral perfusion pressure/intracranial pressure estimation, vasospasm screening, and cerebral emboli detection.
Collapse
|
15
|
Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, Cordingley DM, Alizadeh A, Zeiler FA. Non-Invasive and Minimally-Invasive Cerebral Autoregulation Assessment: A Narrative Review of Techniques and Implications for Clinical Research. Front Neurol 2022; 13:872731. [PMID: 35557627 PMCID: PMC9087842 DOI: 10.3389/fneur.2022.872731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The process of cerebral vessels regulating constant cerebral blood flow over a wide range of systemic arterial pressures is termed cerebral autoregulation (CA). Static and dynamic autoregulation are two types of CA measurement techniques, with the main difference between these measures relating to the time scale used. Static autoregulation looks at the long-term change in blood pressures, while dynamic autoregulation looks at the immediate change. Techniques that provide regularly updating measures are referred to as continuous, whereas intermittent techniques take a single at point in time. However, a technique being continuous or intermittent is not implied by if the technique measures autoregulation statically or dynamically. This narrative review outlines technical aspects of non-invasive and minimally-invasive modalities along with providing details on the non-invasive and minimally-invasive measurement techniques used for CA assessment. These non-invasive techniques include neuroimaging methods, transcranial Doppler, and near-infrared spectroscopy while the minimally-invasive techniques include positron emission tomography along with magnetic resonance imaging and radiography methods. Further, the advantages and limitations are discussed along with how these methods are used to assess CA. At the end, the clinical considerations regarding these various techniques are highlighted.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Amanjyot Singh Sainbhi
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Ouypornkochagorn T, Terzija N, Wright P, Davidson JL, Polydorides N, McCann H. Scalp-Mounted Electrical Impedance Tomography of Cerebral Hemodynamics. IEEE SENSORS JOURNAL 2022; 22:4569-4580. [PMID: 35673527 PMCID: PMC9093315 DOI: 10.1109/jsen.2022.3145587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/15/2023]
Abstract
An Electrical Impedance Tomography (EIT) system has been developed for dynamic three-dimensional imaging of changes in conductivity distribution in the human head, using scalp-mounted electrodes. We attribute these images to changes in cerebral perfusion. At 100 frames per second (fps), voltage measurement is achieved with full-scale signal-to-noise ratio of 105 dB and common-mode rejection ratio > 90 dB. A novel nonlinear method is presented for 3-D imaging of the difference in conductivity distribution in the head, relative to a reference time. The method achieves much reduced modelling error. It successfully localizes conductivity inclusions in experimental and simulation tests, where previous methods fail. For > 50 human volunteers, the rheoencephalography (REG) waveform is observed in EIT voltage measurements for every volunteer, with peak-to-peak amplitudes up to approx. 50 μVrms. Images are presented of the change in conductivity distribution during the REG/cardiac cycle, at 50 fps, showing maximum local conductivity change of approx. 1% in grey/white matter. A total of 17 tests were performed during short (typically 5s) carotid artery occlusions on 5 volunteers, monitored by Transcranial Doppler ultrasound. From EIT measurements averaged over complete REG/cardiac cycles, 13 occlusion tests showed consistently decreased conductivity of cerebral regions on the occluded side, and increased conductivity on the opposite side. The maximum local conductivity change during occlusion was approx. 20%. The simplicity of the carotid artery intervention provides a striking validation of the scalp-mounted measurement system in imaging cerebral hemodynamics, and the REG images indicate its unique combination of sensitivity and temporal resolution.
Collapse
Affiliation(s)
| | | | - Paul Wright
- Department of Electrical and Electronic EngineeringThe University of ManchesterManchesterM13 9PLU.K.
| | - John L. Davidson
- Department of Electrical and Electronic EngineeringThe University of ManchesterManchesterM13 9PLU.K.
| | - Nick Polydorides
- School of EngineeringThe University of EdinburghEdinburghEH9 3JLU.K.
| | - Hugh McCann
- School of EngineeringThe University of EdinburghEdinburghEH9 3JLU.K.
| |
Collapse
|
17
|
Bittencourt Rynkowski C, Caldas J. Ten Good Reasons to Practice Neuroultrasound in Critical Care Setting. Front Neurol 2022; 12:799421. [PMID: 35095741 PMCID: PMC8793827 DOI: 10.3389/fneur.2021.799421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
In the beginning, cerebral ultrasound (US) was not considered feasible because the intact skull was a seemingly impenetrable obstacle. For this reason, obtaining a clear image resolution had been a challenge since the first use of neuroultrasound (NUS) for the assessment of small deep brain structures. However, the improvements in transducer technologies and advances in signal processing have refined the image resolution, and the role of NUS has evolved as an imaging modality for the brain parenchyma within multiple pathologies. This article summarizes ten crucial applications of cerebral ultrasonography for the evaluation and management of neurocritical patients, whose transfer from and to intensive care units poses a real problem to medical care staff. This also encompasses ease of use, low cost, wide acceptance by patients, no radiation risk, and relative independence from movement artifacts. Bedsides, availability and reliability raised the interest of critical care intensivists in using it with increasing frequency. In this mini-review, the usefulness and the advantages of US in the neurocritical care setting are discussed regarding ten aspects to encourage the intensivist physician to practice this important tool.
Collapse
Affiliation(s)
- Carla Bittencourt Rynkowski
- Intensive Care Unit of Cristo Redentor Hospital, Porto Alegre, Brazil.,Intensive Care Unit, Hospital Ernesto Dornelles, Porto Alegre, Brazil
| | - Juliana Caldas
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil.,Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Brazil
| |
Collapse
|
18
|
Svedung Wettervik T, Fahlström M, Enblad P, Lewén A. Cerebral Pressure Autoregulation in Brain Injury and Disorders-A Review on Monitoring, Management, and Future Directions. World Neurosurg 2021; 158:118-131. [PMID: 34775084 DOI: 10.1016/j.wneu.2021.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The role of cerebral pressure autoregulation (CPA) in brain injury and disorders has gained increased interest. The CPA is often disturbed as a consequence of acute brain injury, which contributes to further brain damage and worse outcome. Specifically, in severe traumatic brain injury, CPA disturbances predict worse clinical outcome and targeting an autoregulatory-oriented optimal cerebral perfusion pressure threshold may improve brain energy metabolism and clinical outcome. In aneurysmal subarachnoid hemorrhage, cerebral vasospasm in combination with distal autoregulatory disturbances precipitate delayed cerebral ischemia. The role of optimal cerebral perfusion pressure targets is less clear in aneurysmal subarachnoid hemorrhage, but high cerebral perfusion pressure targets are generally favorable in the vasospasm phase. In acute ischemia, autoregulatory disturbances may occur and autoregulatory-oriented blood pressure (optimal mean arterial pressure) management reduces the risk of hemorrhagic transformation, brain edema, and unfavorable outcome. In chronic occlusive disease such as moyamoya, the gradual reduction of the cerebral circulation leads to compensatory distal vasodilation and the residual CPA capacity predicts the risk for cerebral ischemia. In spontaneous intracerebral hemorrhage, the role of autoregulatory disturbances is less clear, but CPA disturbances correlate with worse clinical outcome. Also, in community-acquired bacterial meningitis, CPA dysfunction is frequent and correlates with worse clinical outcome, but autoregulatory management is yet to be evaluated. In this review, we discuss the role of CPA in different types of brain injury and disease, the strengths and limitations of the monitoring methods, the potentials of autoregulatory management, and future directions in the field.
Collapse
Affiliation(s)
| | - Markus Fahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Gomez A, Batson C, Froese L, Sainbhi AS, Zeiler FA. Utility of Transcranial Doppler in Moderate and Severe Traumatic Brain Injury: A Narrative Review of Cerebral Physiologic Metrics. J Neurotrauma 2021; 38:2206-2220. [PMID: 33554739 PMCID: PMC8328046 DOI: 10.1089/neu.2020.7523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since its creation in the 1980s, transcranial Doppler (TCD) has provided a method of non-invasively monitoring cerebral physiology and has become an invaluable tool in neurocritical care. In this narrative review, we examine the role TCD has in the management of the moderate and severe traumatic brain injury (TBI) patient. We examine the principles of TCD and the ways in which it has been applied to gain insight into cerebral physiology following TBI, as well as explore the clinical evidence supporting these applications. Its usefulness as a tool to non-invasively determine intracranial pressure, detect post-traumatic vasospasm, predict patient outcome, and assess the state of cerebral autoregulation are all explored.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Surgery, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| | | | - Frederick Adam Zeiler
- Department of Surgery, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
- Center on Aging, University of Manitoba, Winnipeg, Canada
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Early Transcranial Doppler Evaluation of Cerebral Autoregulation Independently Predicts Functional Outcome After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2020; 31:253-262. [PMID: 31102237 DOI: 10.1007/s12028-019-00732-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cerebral autoregulation (CA) impairment after aneurysmal subarachnoid hemorrhage (SAH) has been associated with delayed cerebral ischemia and an unfavorable outcome. We investigated whether the early transient hyperemic response test (THRT), a transcranial Doppler (TCD)-based CA evaluation method, can predict functional outcome 6 months after aneurysmal SAH. METHODS This is a prospective observational study of all aneurysmal SAH patients consecutively admitted to a single center between January 2016 and February 2017. CA was evaluated within 72 h of hemorrhage by THRT, which describes the changes in cerebral blood flow velocity after a brief compression of the ipsilateral common carotid artery. CA was considered to be preserved when an increase ≥ 9% of baseline systolic velocity was present. According to the modified Rankin Scale (mRS: 4-6), the primary outcome was unfavorable 6 months after hemorrhage. Secondary outcomes included cerebral infarction, vasospasm on TCD, and an unfavorable outcome at hospital discharge. RESULTS Forty patients were included (mean age = 54 ± 12 years, 70% females). CA was impaired in 19 patients (47.5%) and preserved in 21 (52.5%). Impaired CA patients were older (59 ± 13 vs. 50 ± 9, p = 0.012), showed worse neurological conditions (Hunt&Hess 4 or 5-47.4% vs. 9.5%, p = 0.012), and clinical initial condition (APACHE II physiological score-12 [5.57-13] vs. 3.5 [3-5], p = 0.001). Fourteen patients in the impaired CA group and one patient in the preserved CA group progressed to an unfavorable outcome (73.7% vs. 4.7%, p = 0.0001). The impaired CA group more frequently developed cerebral infarction than the preserved CA group (36.8% vs. 0%, p = 0.003, respectively). After multivariate analysis, impaired CA (OR 5.15 95% CI 1.43-51.99, p = 0.033) and the APACHE II physiological score (OR 1.67, 95% CI 1.01-2.76, p = 0.046) were independently associated with an unfavorable outcome. CONCLUSIONS Early CA impairment detected by TCD and admission APACHE II physiological score independently predicted an unfavorable outcome after SAH.
Collapse
|
21
|
Banik S, Rath GP, Lamsal R, Bithal PK. Effect of dexmedetomidine on dynamic cerebral autoregulation and carbon dioxide reactivity during sevoflurane anesthesia in healthy patients. Korean J Anesthesiol 2020; 73:311-318. [PMID: 32209963 PMCID: PMC7403109 DOI: 10.4097/kja.19246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are conflicting opinions on the effect of dexmedetomidine on cerebral autoregulation. This study assessed its effect on dynamic cerebral autoregulation (dCA) using a transcranial Doppler (TCD). METHODS Thirty American Society of Anesthesiologists physical status I and II patients between 18 and 60 years, who underwent lumbar spine surgery, received infusions of dexmedetomidine (Group D) or normal saline (Group C), followed by anesthesia with propofol and fentanyl, and maintenance with oxygen, nitrous oxide and sevoflurane. After five minutes of normocapnic ventilation and stable bispectral index value (BIS) of 40-50, the right middle cerebral artery flow velocity (MCAFV) was recorded with TCD. The transient hyperemic response (THR) test was performed by compressing the right common carotid artery for 5-7 seconds. The lungs were hyperventilated to test carbon dioxide (CO2) reactivity. Hemodynamic parameters, arterial CO2 tension, pulse oximetry (SpO2), MCAFV and BIS were measured before and after hyperventilation. Dexmedetomidine infusion was discontinued ten minutes before skin-closure. Time to recovery and extubation, modified Aldrete score, and emergence agitation were recorded. RESULTS Demographic parameters, durations of surgery and anesthesia, THR ratio (Group D: 1.26 ± 0.11 vs. Group C: 1.23 ± 0.04; P = 0.357), relative CO2 reactivity (Group D: 1.19 ± 0.34 %/mmHg vs. Group C: 1.23 ± 0.25 %/mmHg; P = 0.547), blood pressure, SpO2, BIS, MCAFV, time to recovery, time to extubation and modified Aldrete scores were comparable. CONCLUSIONS Dexmedetomidine administration does not impair dCA and CO2 reactivity in patients undergoing spine surgery under sevoflurane anesthesia.
Collapse
Affiliation(s)
- Sujoy Banik
- Department of Anesthesia and Perioperative Medicine, London Health Sciences Center, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Girija Prasad Rath
- Department of Neuroanesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Ritesh Lamsal
- Department of Neuroanesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Parmod K Bithal
- Department of Anesthesia and OR Administration, King Fahd Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Bertuetti R, Gritti P, Pelosi P, Robba C. How to use cerebral ultrasound in the ICU. Minerva Anestesiol 2020; 86:327-340. [DOI: 10.23736/s0375-9393.19.13852-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Cerebral Blood Flow and Blood Pressure: Dependent or Codependent? Crit Care Med 2019; 47:1007-1009. [PMID: 31205085 DOI: 10.1097/ccm.0000000000003784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Wang JX, Hu X, Shadden SC. Data-Augmented Modeling of Intracranial Pressure. Ann Biomed Eng 2019; 47:714-730. [PMID: 30607645 PMCID: PMC7155952 DOI: 10.1007/s10439-018-02191-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Precise management of patients with cerebral diseases often requires intracranial pressure (ICP) monitoring, which is highly invasive and requires a specialized ICU setting. The ability to noninvasively estimate ICP is highly compelling as an alternative to, or screening for, invasive ICP measurement. Most existing approaches for noninvasive ICP estimation aim to build a regression function that maps noninvasive measurements to an ICP estimate using statistical learning techniques. These data-based approaches have met limited success, likely because the amount of training data needed is onerous for this complex applications. In this work, we discuss an alternative strategy that aims to better utilize noninvasive measurement data by leveraging mechanistic understanding of physiology. Specifically, we developed a Bayesian framework that combines a multiscale model of intracranial physiology with noninvasive measurements of cerebral blood flow using transcranial Doppler. Virtual experiments with synthetic data are conducted to verify and analyze the proposed framework. A preliminary clinical application study on two patients is also performed in which we demonstrate the ability of this method to improve ICP prediction.
Collapse
Affiliation(s)
- Jian-Xun Wang
- Mechanical Engineering, University of California, Berkeley, CA
- Aerospace and Mechanical Engineering, Center of Informatics and Computational Science, University of Notre Dame, Notre Dame, IN
| | - Xiao Hu
- Department of Physiological Nursing, Department of Neurological surgery, Institute of Computational Health Sciences, UCSF Joint Bio-Engineering Graduate Program, University of California, San Francisco, CA
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Cerebral autoregulation (CA) is a mechanism that maintains cerebral blood flow constant despite fluctuations in systemic arterial blood pressure. This review will focus on recent studies that measured CA non-invasively in acute cerebrovascular events, a feature unique to the transcranial Doppler ultrasound. We will summarize the rationale for CA assessment in acute cerebrovascular disorders and specifically evaluate the existing data on the value of CA measures in relation to clinical severity, guiding management decisions, and prognostication. RECENT FINDINGS Existing data suggest that CA is generally impaired in various cerebrovascular disorders. In patients with small vessel ischemic stroke, CA has been shown to be impaired in both hemispheres, whereas in large territorial strokes, CA impairment has been limited to the affected hemisphere. In these latter patients, impaired CA is also predictive of secondary complications such as hemorrhagic transformation and cerebral edema, hence worse functional outcome. In patients with carotid stenosis, impaired CA may also be associated with a higher ipsilateral hemispheric stroke risk. CA is also strongly linked to outcome in patients with intracranial hemorrhage. In patients with intraparenchymal hemorrhage, CA impairment correlated with clinical and imaging severity, whereas in those with subarachnoid hemorrhage, CA measures have a predictive value for development of delayed cerebral ischemia and radiographic vasospasm. Assessment of CA is increasingly more accessible in acute cerebrovascular disorders and promises to be a valuable measure in guiding hemodynamic management and predicting secondary complication, thus enhancing the care of these patients in the acute setting.
Collapse
Affiliation(s)
- Pedro Castro
- Department of Neurology, São João Hospital Center, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Farzaneh Sorond
- Department of Neurology, Division of Stroke and Neurocritical, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 12-140, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
Lovett ME, Maa T, Chung MG, O'Brien NF. Cerebral blood flow velocity and autoregulation in paediatric patients following a global hypoxic-ischaemic insult. Resuscitation 2018; 126:191-196. [PMID: 29452150 DOI: 10.1016/j.resuscitation.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/27/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
AIM To describe the cerebral blood flow velocity pattern and investigate cerebral autoregulation using transcranial Doppler ultrasonography (TCD) following a global hypoxic-ischaemic (HI) event in children. METHODS This was a prospective, observational study in a quaternary-level paediatric intensive care unit. Intubated children, newborn to 17 years admitted to the PICU following HI injury (asphyxia, drowning, cardiac arrest) were eligible for inclusion. TCD was performed daily until post-injury day 8, discharge, or death, whichever occurred earliest. RESULTS Twenty-six patients were enrolled. Median age was 3 years (0.33, 11.75), initial pH 6.95, and initial lactate 5.4. Median post-resuscitation Glasgow Coma Score was 3T. Across the entire cohort, cerebral blood flow velocity (CBFV) was near normal on day 1. Flow velocity increased to a maximum median value of 1.4 standard deviations above normal on day 3 and slowly downtrended back to baseline by the end of the study period. Median Paediatric Extended Version of the Glasgow Outcome Score was 4 at three months. No patient in the favourable outcome group had extreme CBFV on day one, and only one patient in the favourable group had extreme CBFV on PID 2. In contrast, 38% of patients in the unfavourable group had extreme CBFV on PID 1 (p=.039 compared to frequency in favourable group), and 55% had extreme CBFV on PID 2 (p = .023 compared to frequency in favourable group). No patient had consistently intact cerebral autoregulation throughout the study period. CONCLUSIONS Following a HI event, patients with favourable neurologic outcomes had flow velocity near normal whereas unfavourable outcomes had more extreme flow velocity. Intermittently intact cerebral autoregulation was more frequently seen in those with favourable neurologic outcomes though return to the autoregulatory baseline appears delayed.
Collapse
Affiliation(s)
- Marlina E Lovett
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States.
| | - Tensing Maa
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Melissa G Chung
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, United States; Division of Neurology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Nicole F O'Brien
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
27
|
Al-Jehani H, Angle M, Marcoux J, Teitelbaum J. Early abnormal transient hyperemic response test can predict delayed ischemic neurologic deficit in subarachnoid hemorrhage. Crit Ultrasound J 2018; 10:1. [PMID: 29302799 PMCID: PMC5754282 DOI: 10.1186/s13089-017-0079-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background Early detection of vasospasm is crucial to prevent significant delayed ischemic neurological deficit post subarachnoid hemorrhage. The standard methods of detection, including cerebral angiogram and computed tomography are invasive and not safe to be repeated, as is very often indicated clinically. Transient hyperemic response test has been previously used to predict autoregulation failure in traumatic brain injury and subarachnoid hemorrhage. Aims We investigate the usability of transient hyperemic response test as a predictor of clinical vasospasm in a cohort of patients with aneurismal subarachnoid hemorrhage. Methods A retrospective review of all THRT examinations done between January 2011 and July 2012 conducted at Montreal Neurological Institute and Hospital and the Montreal General Hospital. Patients diagnosed with aSAH in which the THRT was performed within the first 24–48 h of admission were included in the study. Two-dimensional transcranial Doppler images were obtained and velocities were recorded. A positive response was one in which the velocity was increased by more than 9% of the baseline systolic velocity, indicating an intact cerebral autoregulation. Lindegaard ratio > 3 is considered abnormal and in the context of elevated systolic velocity of the MCA, is highly suggestive of DIND. Results Fifteen patients met the inclusion criteria. A total of 6 patients developed clinical and radiological vasospasm. Out of these 6 patients, 5 (83%) had an abnormal THRT in the initial TCD assessment (p = 0.0406). We found that abnormal transient hyperemic response test readings are predictive of subsequent vasospasm development. Conclusions The results of this small retrospective study support the notion that transient hyperemic response test has predictive value in vasospasm development and may prove useful in patient monitoring and successful clinical management.
Collapse
Affiliation(s)
- Hosam Al-Jehani
- Neurocritical Care Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada. .,Department of Neurosurgery and Critical Care Medicine, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. .,Department of Neurology and Neurosur- gery, Montreal Neurological Institute and Hospital, Montreal General Hospital, McGill University, Montreal, QC, Canada. .,Department of Neurosurgery, King Fahad Specialist Hospital in Dammam, Dammam, Saudi Arabia.
| | - Mark Angle
- Neurocritical Care Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Judith Marcoux
- Department of Neurology and Neurosur- gery, Montreal Neurological Institute and Hospital, Montreal General Hospital, McGill University, Montreal, QC, Canada
| | - Jeanne Teitelbaum
- Neurocritical Care Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Abstract
Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Cristina Duque
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Steven K Feske
- Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
29
|
Zeiler FA, Donnelly J, Calviello L, Menon DK, Smielewski P, Czosnyka M. Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods. J Neurotrauma 2017; 34:3207-3223. [PMID: 28648106 DOI: 10.1089/neu.2017.5085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO2) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE®, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched. A two tier filter of references was conducted. The total number of articles utilizing each of the nine searched techniques for intermittent/semi-intermittent autoregulation techniques in adult TBI were: CTP/Xe-CT (10), PET (6), MRI (0), AVDO2 (10), ARI-based TCDT (9), THRT (6), OHT (3), Mx (17), and TF-ARI (6). The premise behind all of the intermittent techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx and TF-ARI are based on spontaneous fluctuations of cerebral perfusion pressure (CPP) or mean arterial pressure (MAP). The method for assessing the cerebral circulation during these manipulations varies, with both imaging-based techniques and TCD utilized. Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (minus Mx), it is important to acknowledge the availability of such tests. They have provided fundamental insight into human autoregulatory capacity, leading to the development of continuous and more commonly applied techniques in the intensive care unit (ICU). Numerous methods of intermittent/semi-intermittent pressure autoregulation assessment in adult TBI exist, including: CTP/Xe-CT, PET, AVDO2 technique, TCDT-based ARI, THRT, OHT, Mx, and TF-ARI. MRI-based techniques in adult TBI are yet to be described, with the main focus of MRI techniques on metabolic-based cerebrovascular reactivity (CVR) and not pressure-based autoregulation.
Collapse
Affiliation(s)
- Frederick A Zeiler
- 1 Division of Anaesthesia, University of Cambridge , Cambridge, United Kingdom
- 2 Clinician Investigator Program, University of Manitoba , Winnipeg, Canada
- 3 Section of Neurosurgery, Department of Surgery, University of Manitoba , Winnipeg, Canada
| | - Joseph Donnelly
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - Leanne Calviello
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 1 Division of Anaesthesia, University of Cambridge , Cambridge, United Kingdom
| | - Peter Smielewski
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - Marek Czosnyka
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
30
|
Effect of High-Dose Simvastatin on Cerebral Blood Flow and Static Autoregulation in Subarachnoid Hemorrhage. Neurocrit Care 2017; 25:56-63. [PMID: 26721259 DOI: 10.1007/s12028-015-0233-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Statins may promote vasodilation following subarachnoid hemorrhage (SAH) and improve the response to blood pressure elevation. We sought to determine whether simvastatin increases cerebral blood flow (CBF) and alters the response to induced hypertension after SAH. METHODS Statin-naïve patients admitted <72 h after WFNS ≥2 aneurysmal SAH were randomly assigned to 80 mg simvastatin/day or placebo for 21 days. Regional CBF was measured with quantitative (15)O PET on SAH day 7-10 before and after raising mean arterial pressure (MAP) 20-25 %. Autoregulatory index (AI) was calculated as the ratio of % change in resistance (MAP/CBF) to % change in MAP. Angiography was performed within 24 h of PET. Results are presented as simvastatin vs. placebo. RESULTS Thirteen patients received simvastatin and 12 placebo. Clinical characteristics were similar. Moderate or severe angiographic vasospasm occurred in 42 vs. 45 % and delayed cerebral ischemia in 14 vs. 55 % (p = 0.074). During PET studies, MAP (110 ± 10 vs. 111 ± 12), global CBF (41 ± 12 vs. 43 ± 13), and CVR (2.95 ± 1.0 vs. 2.81 ± 1.0) did not differ at baseline. When MAP was raised to 135 ± 7 mm Hg vs. 137 ± 15, global CBF did not change. Global AI did not differ (107 ± 59 vs. 0. 89 ± 52 %, p = 0.68). CBF did not change in regions with low baseline flow or in regions supplied by vessels with angiographic vasospasm in either group. Six-month modified Rankin Scale scores did not differ. CONCLUSIONS Our data indicate that initiation of therapy with high-dose simvastatin does not alter baseline CBF or response to induced hypertension.
Collapse
|
31
|
Malojcic B, Giannakopoulos P, Sorond FA, Azevedo E, Diomedi M, Oblak JP, Carraro N, Boban M, Olah L, Schreiber SJ, Pavlovic A, Garami Z, Bornstein NM, Rosengarten B. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer's disease. BMC Med 2017; 15:27. [PMID: 28178960 PMCID: PMC5299782 DOI: 10.1186/s12916-017-0799-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/21/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The vascular contributions to neurodegeneration and neuroinflammation may be assessed by magnetic resonance imaging (MRI) and ultrasonography (US). This review summarises the methodology for these widely available, safe and relatively low cost tools and analyses recent work highlighting their potential utility as biomarkers for differentiating subtypes of cognitive impairment and dementia, tracking disease progression and evaluating response to treatment in various neurocognitive disorders. METHODS At the 9th International Congress on Vascular Dementia (Ljubljana, Slovenia, October 2015) a writing group of experts was formed to review the evidence on the utility of US and arterial spin labelling (ASL) as neurophysiological markers of normal ageing, vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Original articles, systematic literature reviews, guidelines and expert opinions published until September 2016 were critically analysed to summarise existing evidence, indicate gaps in current knowledge and, when appropriate, suggest standards of use for the most widely used US and ASL applications. RESULTS Cerebral hypoperfusion has been linked to cognitive decline either as a risk or an aggravating factor. Hypoperfusion as a consequence of microangiopathy, macroangiopathy or cardiac dysfunction can promote or accelerate neurodegeneration, blood-brain barrier disruption and neuroinflammation. US can evaluate the cerebrovascular tree for pathological structure and functional changes contributing to cerebral hypoperfusion. Microvascular pathology and hypoperfusion at the level of capillaries and small arterioles can also be assessed by ASL, an MRI signal. Despite increasing evidence supporting the utility of these methods in detection of microvascular pathology, cerebral hypoperfusion, neurovascular unit dysfunction and, most importantly, disease progression, incomplete standardisation and missing validated cut-off values limit their use in daily routine. CONCLUSIONS US and ASL are promising tools with excellent temporal resolution, which will have a significant impact on our understanding of the vascular contributions to VCI and AD and may also be relevant for assessing future prevention and therapeutic strategies for these conditions. Our work provides recommendations regarding the use of non-invasive imaging techniques to investigate the functional consequences of vascular burden in dementia.
Collapse
Affiliation(s)
- Branko Malojcic
- Department of Neurology, University Hospital Center Zagreb, Zagreb School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia.
| | | | - Farzaneh A Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center and Faculty of Medicine of University of Porto, Porto, Portugal
| | - Marina Diomedi
- Cerebrovascular Disease Center, Stroke Unit, University of Rome Tor Vergata, Rome, Italy
| | - Janja Pretnar Oblak
- Department of Vascular Neurology and Intensive Therapy, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nicola Carraro
- Department of Medical Sciences, Clinical Neurology-Stroke Unit, University Hospital, University of Trieste, Trieste, Italy
| | - Marina Boban
- Department of Neurology, University Hospital Center Zagreb, Zagreb School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Laszlo Olah
- Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Stephan J Schreiber
- Department of Neurology, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Aleksandra Pavlovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zsolt Garami
- Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Nantan M Bornstein
- Neurology Department, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | | |
Collapse
|
32
|
D'Andrea A, Conte M, Cavallaro M, Scarafile R, Riegler L, Cocchia R, Pezzullo E, Carbone A, Natale F, Santoro G, Caso P, Russo MG, Bossone E, Calabrò R. Transcranial Doppler ultrasonography: From methodology to major clinical applications. World J Cardiol 2016; 8:383-400. [PMID: 27468332 PMCID: PMC4958690 DOI: 10.4330/wjc.v8.i7.383] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
Non-invasive Doppler ultrasonographic study of cerebral arteries [transcranial Doppler (TCD)] has been extensively applied on both outpatient and inpatient settings. It is performed placing a low-frequency (≤ 2 MHz) transducer on the scalp of the patient over specific acoustic windows, in order to visualize the intracranial arterial vessels and to evaluate the cerebral blood flow velocity and its alteration in many different conditions. Nowadays the most widespread indication for TCD in outpatient setting is the research of right to left shunting, responsable of so called "paradoxical embolism", most often due to patency of foramen ovale which is responsable of the majority of cryptogenic strokes occuring in patients younger than 55 years old. TCD also allows to classify the grade of severity of such shunts using the so called "microembolic signal grading score". In addition TCD has found many useful applications in neurocritical care practice. It is useful on both adults and children for day-to-day bedside assessment of critical conditions including vasospasm in subarachnoidal haemorrhage (caused by aneurysm rupture or traumatic injury), traumatic brain injury, brain stem death. It is used also to evaluate cerebral hemodynamic changes after stroke. It also allows to investigate cerebral pressure autoregulation and for the clinical evaluation of cerebral autoregulatory reserve.
Collapse
Affiliation(s)
- Antonello D'Andrea
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Marianna Conte
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Massimo Cavallaro
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Raffaella Scarafile
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Lucia Riegler
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Rosangela Cocchia
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Enrica Pezzullo
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Andreina Carbone
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Francesco Natale
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Giuseppe Santoro
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Pio Caso
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Maria Giovanna Russo
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Eduardo Bossone
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| | - Raffaele Calabrò
- Antonello D'Andrea, Marianna Conte, Massimo Cavallaro, Raffaella Scarafile, Lucia Riegler, Rosangela Cocchia, Enrica Pezzullo, Andreina Carbone, Francesco Natale, Giuseppe Santoro, Pio Caso, Maria Giovanna Russo, Raffaele Calabrò, Integrated Diagnostic Cardiology, Second University of Naples, AORN "dei Colli", Monaldi Hospital, 80121 Naples, Italy
| |
Collapse
|
33
|
Dolui S, Wang Z, Wang DJJ, Mattay R, Finkel M, Elliott M, Desiderio L, Inglis B, Mueller B, Stafford RB, Launer LJ, Jacobs DR, Bryan RN, Detre JA. Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort. J Cereb Blood Flow Metab 2016; 36:1244-56. [PMID: 27142868 PMCID: PMC4929707 DOI: 10.1177/0271678x16646124] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. CONCLUSIONS Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population.
Collapse
Affiliation(s)
- Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA
| | - Ze Wang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China Departments of Psychiatry and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Raghav Mattay
- Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mack Finkel
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa Desiderio
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Bryon Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Randall B Stafford
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Ryu J, Hu X, Shadden SC. A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics. J Biomech Eng 2016; 137:101009. [PMID: 26287937 DOI: 10.1115/1.4031331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/08/2022]
Abstract
The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is necessary for cerebral blood flow (CBF) modeling, as well as investigations into pathological conditions. We discuss a one-dimensional (1D) nonlinear model of blood flow in the cerebral arteries coupled to autoregulatory lumped-parameter (LP) networks. The LP networks incorporate intracranial pressure (ICP), cerebrospinal fluid (CSF), and cortical collateral blood flow models. The overall model is used to evaluate changes in CBF due to occlusions in the middle cerebral artery (MCA) and common carotid artery (CCA). Velocity waveforms at the CCA and internal carotid artery (ICA) were examined prior and post MCA occlusion. Evident waveform changes due to the occlusion were observed, providing insight into cerebral vasospasm monitoring by morphological changes of the velocity or pressure waveforms. The role of modeling of collateral blood flows through cortical pathways and communicating arteries was also studied. When the MCA was occluded, the cortical collateral flow had an important compensatory role, whereas the communicating arteries in the circle of Willis (CoW) became more important when the CCA was occluded. To validate the model, simulations were conducted to reproduce a clinical test to assess dynamic autoregulatory function, and results demonstrated agreement with published measurements.
Collapse
|
35
|
D'Andrea A, Conte M, Scarafile R, Riegler L, Cocchia R, Pezzullo E, Cavallaro M, Carbone A, Natale F, Russo MG, Gregorio G, Calabrò R. Transcranial Doppler Ultrasound: Physical Principles and Principal Applications in Neurocritical Care Unit. J Cardiovasc Echogr 2016; 26:28-41. [PMID: 28465958 PMCID: PMC5224659 DOI: 10.4103/2211-4122.183746] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transcranial Doppler (TCD) ultrasonography is a noninvasive ultrasound study, which has been extensively applied on both outpatient and inpatient settings. It involves the use of a low-frequency (≤2 MHz) transducer, placed on the scalp, to insonate the basal cerebral arteries through relatively thin bone windows and to measure the cerebral blood flow velocity and its alteration in many different conditions. In neurointensive care setting, TCD is useful for both adults and children for day-to-day bedside assessment of critical conditions including vasospasm in subarachnoid hemorrhage, traumatic brain injury, acute ischemic stroke, and brain stem death. It also allows to investigate the cerebrovascular autoregulation in setting of carotid disease and syncope. In this review, we will describe physical principles underlying TCD, flow indices most frequently used in clinical practice and critical care applications in Neurocritical Unit care.
Collapse
Affiliation(s)
- Antonello D'Andrea
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Marianna Conte
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Raffaella Scarafile
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Lucia Riegler
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Rosangela Cocchia
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Enrica Pezzullo
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Massimo Cavallaro
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Andreina Carbone
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Francesco Natale
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Maria Giovanna Russo
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| | - Giovanni Gregorio
- Department of Cardiology, San Luca Hospital, Vallo della Lucania, Salerno, Italy
| | - Raffaele Calabrò
- Department of Cardiology, Integrated Diagnostic Cardiology, Second University of Neaples, Monaldi Hospital, Neaples, Italy
| |
Collapse
|
36
|
Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, Pickard JD, Kirkpatrick PJ. Monitoring Cerebral Autoregulation After Subarachnoid Hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:199-203. [PMID: 27165906 DOI: 10.1007/978-3-319-22533-3_40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Delayed cerebral ischemia (DCI) is a major contributor to morbidity and mortality after subarachnoid hemorrhage (SAH). Data challenge vasospasm being the sole cause of ischemia and suggest other factors. We tested the hypothesis that early autoregulatory failure might predict DCI. METHODS This is a prospective observational study of cerebral autoregulation following SAH in which the primary end point was DCI at 21 days. Cox proportional hazards and multivariate models were used and the benefit of using multiple indices was analyzed. RESULTS Ninety-eight patients were included in the study. There was an increased risk of DCI with early dysautoregulation (odds ratio [OR]: 7.46, 95% confidence interval [CI]: 3.03-18.40 and OR: 4.52, 95 % CI: 1.84-11.07 for the transcranial Doppler index of autoregulation [Sxa] and near-infrared spectroscopy index of autoregulation [TOxa], respectively), but not vasospasm (OR: 1.36, 95 % CI: 0.56-3.33). Sxa and TOxa remained independent predictors of DCI in the multivariate model (OR: 12.66, 95 % CI: 2.97-54.07 and OR: 5.34, 95 % CI: 1.25-22.84 for Sxa and TOxa, respectively). There was good agreement between different indices. All 13 patients with impaired autoregulation in all three methods developed DCI. CONCLUSIONS Disturbed autoregulation in the first 5 days after SAH is predictive of DCI. Although colinearities exist between the methods assessed, multimodal monitoring of cerebral autoregulation can aid the prediction of DCI.
Collapse
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Box 167, Block A, Hills Road, CB2 0QQ, Cambridge, UK. .,Department of Neurosurgery, Medical Centre for Postgraduate Education, Mazovia Brodno Hospital, Warsaw, Poland.
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Box 167, Block A, Hills Road, CB2 0QQ, Cambridge, UK
| | - Magdalena Kasprowicz
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Box 167, Block A, Hills Road, CB2 0QQ, Cambridge, UK.,Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wroclaw, Poland
| | - Ken M Brady
- Department of Anesthesiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Box 167, Block A, Hills Road, CB2 0QQ, Cambridge, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Box 167, Block A, Hills Road, CB2 0QQ, Cambridge, UK
| |
Collapse
|
37
|
Budohoski KP, Czosnyka M, Kirkpatrick PJ. The Role of Monitoring Cerebral Autoregulation After Subarachnoid Hemorrhage. Neurosurgery 2015; 62 Suppl 1:180-4. [PMID: 26181941 DOI: 10.1227/neu.0000000000000808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
38
|
Lang EW, Kasprowicz M, Smielewski P, Santos E, Pickard J, Czosnyka M. Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. J Neurosurg 2015; 122:588-94. [DOI: 10.3171/2014.10.jns14602] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The pressure reactivity index (PRx) correlates with outcome after traumatic brain injury (TBI) and is used to calculate optimal cerebral perfusion pressure (CPPopt). The PRx is a correlation coefficient between slow, spontaneous changes (0.003–0.05 Hz) in intracranial pressure (ICP) and arterial blood pressure (ABP). A novel index—the so-called long PRx (L-PRx)—that considers ABP and ICP changes (0.0008–0.008 Hz) was proposed.
METHODS
The authors compared PRx and L-PRx for 6-month outcome prediction and CPPopt calculation in 307 patients with TBI. The PRx- and L-PRx–based CPPopt were determined and the predictive power and discriminant abilities were compared.
RESULTS
The PRx and L-PRx correlation was good (R = 0.7, p < 0.00001; Spearman test). The PRx, age, CPP, and Glasgow Coma Scale score but not L-PRx were significant fatal outcome predictors (death and persistent vegetative state). There was a significant difference between the areas under the receiver operating characteristic curves calculated for PRx and L-PRx (0.61 ± 0.04 vs 0.51 ± 0.04; z-statistic = −3.26, p = 0.011), which indicates a better ability by PRx than L-PRx to predict fatal outcome. The CPPopt was higher for L-PRx than for PRx, without a statistical difference (median CPPopt for L-PRx: 76.9 mm Hg, interquartile range [IQR] ± 10.1 mm Hg; median CPPopt for PRx: 74.7 mm Hg, IQR ± 8.2 mm Hg). Death was associated with CPP below CPPopt for PRx (χ2 = 30.6, p < 0.00001), and severe disability was associated with CPP above CPPopt for PRx (χ2 = 7.8, p = 0.005). These relationships were not statistically significant for CPPopt for L-PRx.
CONCLUSIONS
The PRx is superior to the L-PRx for TBI outcome prediction. Individual CPPopt for L-PRx and PRx are not statistically different. Deviations between CPP and CPPopt for PRx are relevant for outcome prediction; those between CPP and CPPopt for L-PRx are not. The PRx uses the entire B-wave spectrum for index calculation, whereas the L-PRX covers only one-third of it. This may explain the performance discrepancy.
Collapse
Affiliation(s)
| | - Magdalena Kasprowicz
- 2Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wroclaw, Poland; and
| | - Peter Smielewski
- 3Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Edgar Santos
- 4Department of Neurosurgery, University of Heidelberg, Germany
| | - John Pickard
- 3Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Marek Czosnyka
- 3Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| |
Collapse
|
39
|
Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, Brady KM, Reinhard M, Hutchinson PJ, Smielewski P. Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:248-56. [PMID: 25407266 PMCID: PMC4426741 DOI: 10.1038/jcbfm.2014.192] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 01/31/2023]
Abstract
The impulse response (IR)-based autoregulation index (ARI) allows for continuous monitoring of cerebral autoregulation using spontaneous fluctuations of arterial blood pressure (ABP) and cerebral flow velocity (FV). We compared three methods of autoregulation assessment in 288 traumatic brain injury (TBI) patients managed in the Neurocritical Care Unit: (1) IR-based ARI; (2) transfer function (TF) phase, gain, and coherence; and (3) mean flow index (Mx). Autoregulation index was calculated using the TF estimation (Welch method) and classified according to the original Tiecks' model. Mx was calculated as a correlation coefficient between 10-second averages of ABP and FV using a moving 300-second data window. Transfer function phase, gain, and coherence were extracted in the very low frequency (VLF, 0 to 0.05 Hz) and low frequency (LF, 0.05 to 0.15 Hz) bandwidths. We studied the relationship between these parameters and also compared them with patients' Glasgow outcome score. The calculations were performed using both cerebral perfusion pressure (CPP; suffix 'c') as input and ABP (suffix 'a'). The result showed a significant relationship between ARI and Mx when using either ABP (r=-0.38, P<0.001) or CPP (r=-0.404, P<0.001) as input. Transfer function phase and coherence_a were significantly correlated with ARI_a and ARI_c (P<0.05). Only ARI_a, ARI_c, Mx_a, Mx_c, and phase_c were significantly correlated with patients' outcome, with Mx_c showing the strongest association.
Collapse
Affiliation(s)
- Xiuyun Liu
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- 1] Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK [2] Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Joseph Donnelly
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Nathalie Nasr
- 1] Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK [2] Service de Neurologie Vasculaire, Hôpital Rangueil, INSERM U1048 - Team 11 (I2MC-Toulouse), Université de Toulouse III, Toulouse, France
| | - Ken M Brady
- Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Matthias Reinhard
- Department of Neurology, University Hospital, University of Freiburg, Freiburg, Germany
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med 2013; 2013:629378. [PMID: 24455270 PMCID: PMC3876587 DOI: 10.1155/2013/629378] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/10/2013] [Indexed: 12/28/2022] Open
Abstract
Transcranial Doppler (TCD) is a noninvasive ultrasound (US) study used to measure cerebral blood flow velocity (CBF-V) in the major intracranial arteries. It involves use of low-frequency (≤2 MHz) US waves to insonate the basal cerebral arteries through relatively thin bone windows. TCD allows dynamic monitoring of CBF-V and vessel pulsatility, with a high temporal resolution. It is relatively inexpensive, repeatable, and portable. However, the performance of TCD is highly operator dependent and can be difficult, with approximately 10-20% of patients having inadequate transtemporal acoustic windows. Current applications of TCD include vasospasm in sickle cell disease, subarachnoid haemorrhage (SAH), and intra- and extracranial arterial stenosis and occlusion. TCD is also used in brain stem death, head injury, raised intracranial pressure (ICP), intraoperative monitoring, cerebral microembolism, and autoregulatory testing.
Collapse
Affiliation(s)
- Jawad Naqvi
- University Hospital South Manchester, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Kok Hooi Yap
- Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
| | - Gulraiz Ahmad
- Royal Oldham Hospital, Rochdale Road, Manchester OL1 2JH, UK
| | - Jonathan Ghosh
- University Hospital South Manchester, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| |
Collapse
|
41
|
Topcuoglu MA, Unal A, Arsava EM. Advances in transcranial Doppler clinical applications. ACTA ACUST UNITED AC 2013; 4:343-58. [PMID: 23496150 DOI: 10.1517/17530059.2010.495749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Diagnostic neurosonology techniques including transcranial Doppler (TCD), transcranial color Doppler imaging (TCDI) and power motion-mode (PMD) TCD provide information about various aspects of cerebrovascular status such as microemboli detection, dynamic autoregulation and long-duration real-time monitoring of flow characteristics. Although most of the information provided cannot be obtained by any other imaging methodology, and is critical in clinical decision-making in the care of various neurovascular diseases, these modalities are widely underutilized. Increasing the familiarity to neurosonological techniques is of crucial importance. AREAS COVERED IN THIS REVIEW After briefly reviewing TCD, TCDI and PMD techniques, classical features are summarized and recent developments in the clinical neurosonology applications with specific interest in the neurovascular disorders. WHAT THE READER WILL GAIN Practical perspectives of ultrasound evaluation of intracranial arterial status in various neurovascular diseases including sickle cell vasculopathy and vasospasm are reviewed in detail. Pearls on the neurosonological monitoring of acute ischemic stroke and increased intracranial pressure increase is provided. Standards of cerebral microembolism detection, right to left shunts diagnosis and cerebral autoregulation assessment are discussed methodologically. Future perspectives of therapeutic neurosonology including sonothrombolysis, microbubble-ultrasound-mediated gene and drug delivery into the brain, and alteration of the brain-blood barrier permeability are summarized. TAKE HOME MESSAGE Suitable with future medicine, neurosonology brings imaging to the bedside, which enables the treating physician to monitor a given intervention in real time. A non-invasive neurosonology-guided treatment of various diseases could be possible in the near future. The first and foremost step in gaining mastery in this very fruitful field is beginning to use it.
Collapse
Affiliation(s)
- Mehmet Akif Topcuoglu
- Hacettepe University Hospitals, Department of Neurology, Neurological Intensive Care Unit, 06100, Sihhiye, Ankara, Turkey +90 312 3051806 ; +90 312 3093451 ;
| | | | | |
Collapse
|
42
|
Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, Pickard JD, Kirkpatrick PJ. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab 2013; 33:449-56. [PMID: 23232948 PMCID: PMC3587818 DOI: 10.1038/jcbfm.2012.189] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In patients after subarachnoid hemorrhage (SAH) failure of cerebral autoregulation is associated with delayed cerebral ischemia (DCI). Various methods of assessing autoregulation are available, but their predictive values remain unknown. We characterize the relationship between different indices of autoregulation. Patients with SAH within 5 days were included in a prospective study. The relationship between three indices of autoregulation was analyzed: two indices calculated using spontaneous blood pressure fluctuations, Sxa (based on transcranial Doppler) and TOxa (based on near-infrared spectroscopy); and transient hyperemic response test (THRT) where a brief compression of the common carotid artery is used. The predictive value of indices was assessed using data from the first 5 days. Overall there was only moderate correlation between indices. However, both Sxa and TOxa showed good accuracy in predicting impaired autoregulation evidenced by a negative THRT (area under the curve (AUC): 0.788, 95% CI: 0.723 to 0.854 and AUC: 0.827, 95% CI: 0.769 to 0.885, respectively). All indices proved accurate in predicting DCI when 0- to 5-day data were used (AUC: 0.801, 95% CI: 0.660 to 0.942; AUC: 0.857, 95% CI: 0.731 to 0.984, AUC: 0.796, 95% CI: 0.658 to 0.934 for THRT, Sxa, and TOxa, respectively). Combining all three indices had 100% specificity for predicting DCI. While multiple colinearities exist between the assessed methods, multimodal monitoring of cerebral autoregulation can aid in predicting DCI.
Collapse
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Topcuoglu MA. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem 2012; 123 Suppl 2:39-51. [PMID: 23050641 DOI: 10.1111/j.1471-4159.2012.07942.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Albeit no direct anatomical information can be obtained, neurosonological methods provide real-time determination of velocity, and spectral waveform of blood flow in basal intracranial arteries adds significant benefit to the care of the patients with neurovascular diseases. Several features, such as relative simplicity in terms of interpretation and performance, significantly low cost, totally non-invasiveness, portability, and excellent temporal resolution, make neurosonology increasingly popular tool for evaluation, planning, and monitoring of treatment, and for determining prognosis in various neurovascular diseases. Usefulness of transcranial Doppler in diagnosing/monitoring subarachnoid hemorrhage related vasospasm and sickle cell vasculopathy is already well known. Utility in diagnosis of intracranial arterial stenosis, acute occlusion and recanalization, intracranial hemodynamic effect of the cervical arterial pathologies, intracranial pressure increase, and cerebral circulatory arrest are also well established. Neurosonological determination of vasomotor reactivity, cerebral autoregulation, neurovascular coupling, and micro-embolic signals detection are useful in the assessment of stroke risk, diagnosis of right-to-left shunting, and monitoring during surgery and interventional procedures. Transcranial Doppler is also an evolving ultrasound method with a therapeutic potential such as augmentation of clot lysis and cerebral delivery of thrombolytic or neuroprotective agent loaded nanobubbles in neurovascular diseases. The aim of this study is to give an overview of current usage of the different ultrasound modalities in different neurovascular diseases.
Collapse
Affiliation(s)
- M Akif Topcuoglu
- Hacettepe University Hospitals, Department of Neurology, Neurosonology Laboratory, Neurological Intensive Care Unit, Ankara, Turkey.
| |
Collapse
|
45
|
Budohoski KP, Reinhard M, Aries MJH, Czosnyka Z, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care 2012; 17:211-8. [PMID: 21691895 DOI: 10.1007/s12028-011-9572-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cerebral autoregulation assessed using transcranial Doppler (TCD) mean flow velocity (FV) in response to various physiological challenges is predictive of outcome after traumatic brain injury (TBI). Systolic and diastolic FV have been explored in other diseases. This study aims to evaluate the systolic, mean and diastolic FV for monitoring autoregulation and predicting outcome after TBI. METHODS 300 head-injured patients with blood pressure (ABP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), and FV recordings were studied. Autoregulation was calculated as a correlation of slow changes in diastolic, mean and systolic components of FV with CPP (Dx, Mx, Sx, respectively) and ABP (Dxa, Mxa, Sxa, respectively) from 30 consecutive 10 s averaged values. The relationship with age, severity of injury, and dichotomized 6 months outcome was examined. RESULTS Association with outcome was significant for Mx and Sx. For favorable/unfavorable and death/survival outcomes Sx showed the strongest association (F = 20.11; P = 0.00001 and F = 13.10; P = 0.0003, respectively). Similarly, indices derived from ABP demonstrated the highest discriminatory value when systolic FV was used (F = 12.49; P = 0.0005 and F = 5.32; P = 0.02, respectively). Indices derived from diastolic FV demonstrated significant differences (when calculated using CPP) only when comparing between fatal and non-fatal outcome. CONCLUSIONS Systolic flow indices (Sx and Sxa) demonstrated a stronger association with outcome than the mean flow indices (Mx and Mxa), irrespective of whether CPP or ABP was used for calculation.
Collapse
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Asahi K, Hori M, Hamasaki N, Sato S, Nakanishi H, Kuwatsuru R, Sasai K, Aoki S. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility. Acta Radiol Short Rep 2012; 1:10.1258_arsr.2012.110015. [PMID: 23986833 PMCID: PMC3738342 DOI: 10.1258/arsr.2012.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 03/12/2012] [Indexed: 11/18/2022] Open
Abstract
Background It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. Purpose To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Material and Methods Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. Results During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Conclusion Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression.
Collapse
Affiliation(s)
- Kouichi Asahi
- Department of Radiology, Juntendo University School of Medicine , Tokyo , Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bijlenga P, Czosnyka M, Budohoski KP, Soehle M, Pickard JD, Kirkpatrick PJ, Smielewski P. "Optimal cerebral perfusion pressure" in poor grade patients after subarachnoid hemorrhage. Neurocrit Care 2010; 13:17-23. [PMID: 20405341 DOI: 10.1007/s12028-010-9362-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cerebrovascular pressure reactivity depends on cerebral perfusion pressure (CPP), with the optimal CPP (CPPopt) defined as pressure at which cerebrovascular reactivity is functioning optimally, reaching minimal value of pressure reactivity index (PRx). The study investigates the association between vasospasm, PRx, and CPPopt in poor grade patients (WFNS 4&5) after subarachnoid hemorrhage (SAH). METHODS Data of intracranial pressure (ICP), arterial blood pressure (ABP), and flow velocities (FV) in the Middle Cerebral Artery (MCA) on transcranial Doppler from 42 SAH patients were analyzed retrospectively. PRx was calculated as a correlation coefficient between 10 s mean values of ABP and ICP calculated over a moving 3 min window. Data recorded during the first 48 h were available in 25 cases and during the first 3 days in 29 patients. Recordings obtained from day 4 to day 24 were available in 23 patients. RESULTS PRx at optimal CPP measured during the first 48 h showed better cerebrovascular reactivity in patients who were alive at 3 months after ictus than in those who died (PRx value -0.17 +/- 0.05 vs. 0.1 +/- 0.09; P < 0.01). PRx below zero at CPPopt during the first 48 h had 87.5% positive predictive value for survival. CPPopt was lower before than during vasospasm (78 +/- 3 mmHg, N = 29 vs. 98 +/- 4 mmHg; N = 17, P < 0.0001). The overall correlation between CPPopt and Lindegaard ratio was positive (R = 0.39; P < 0.01; N = 45). CONCLUSION Most WFNS 4&5 grade SAH patients with PRx below zero at optimal CPP during the first 48 h after ictus survived. Optimal CPP increases during vasospasm.
Collapse
Affiliation(s)
- Philippe Bijlenga
- Academic Neurosurgical Unit, Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Tseng MY, Hutchinson PJ, Kirkpatrick PJ. Interaction of neurovascular protection of erythropoietin with age, sepsis, and statin therapy following aneurysmal subarachnoid hemorrhage. J Neurosurg 2010; 112:1235-9. [DOI: 10.3171/2009.10.jns09954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
In a previous randomized controlled trial, the authors demonstrated that acute erythropoietin (EPO) therapy reduced severe vasospasm and delayed ischemic deficits (DIDs) following aneurysmal subarachnoid hemorrhage. In this study, the authors aimed to investigate the potential interaction of neurovascular protection by EPO with age, sepsis, and concurrent statin therapy.
Methods
The clinical events of 80 adults older than 18 years and with < 72 hours of aneurysmal subarachnoid hemorrhage, who were randomized to receive 30,000 U of intravenous EPO-β or placebo every 48 hours for a total of 3 doses, were analyzed by stratification according to age (< or ≥ 60 years), sepsis, or concomitant statin therapy. End points in the trial included cerebral vasospasm and impaired autoregulation on transcranial Doppler ultrasonography, DIDs, and unfavorable outcome at discharge and at 6 months measured with the modified Rankin Scale and Glasgow Outcome Scale. Analyses were performed using the t-test and/or ANOVA for repeated measurements.
Results
Younger patients (< 60 years old) or those without sepsis obtained benefits from EPO by a reduction in vasospasm, impaired autoregulation, and unfavorable outcome at discharge. Compared with nonseptic patients taking EPO, those with sepsis taking EPO had a lower absolute reticulocyte count (nonsepsis vs sepsis, 143.5 vs. 105.8 × 109/L on Day 6; p = 0.01), suggesting sepsis impaired both hematopoiesis and neurovascular protection by EPO. In the EPO group, none of the statin users suffered DIDs (p = 0.078), implying statins may potentiate neuroprotection by EPO.
Conclusions
Erythropoietin-related neurovascular protection appears to be attenuated by old age and sepsis and enhanced by statins, an important finding for designing Phase III trials.
Collapse
|
49
|
Cerebral Autoregulation and CO2 Reactivity Before and After Elective Supratentorial Tumor Resection. J Neurosurg Anesthesiol 2010; 22:132-7. [DOI: 10.1097/ana.0b013e3181c9fbf1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Álvarez-Fernández JA, Martín-Velasco MM, Igeño-Cano JC, Pérez-Quintero R. [Transcranial Doppler ultrasonography usefulness in cardiac arrest resuscitation]. Med Intensiva 2010; 34:550-8. [PMID: 20211509 DOI: 10.1016/j.medin.2009.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/19/2009] [Accepted: 12/17/2009] [Indexed: 11/25/2022]
Abstract
An effective tissue perfusion has decisive influence on the final prognosis both during cardiopulmonary resuscitation (CPR) and after recovery of spontaneous circulation (ROSC). The transcranial Doppler ultranosography (TCD) examines the velocity and pulsatility of cerebral blood flow, making it possible to perform "beat to beat" hemodynamic analysis. During CPR, TCD peak systolic velocity reflects cerebral perfusion of the chest compressions. Beyond 2 hours after ROSC, persistence in the cerebral arteries of a hemodynamic TCD pattern (low velocities with high pulsatilities) predicts poor neurological prognosis. Early or delayed presence of a hyperemic TCD pattern (high velocities with low pulsatilities) is associated conclusively with evolution to intracranial hypertension and its appearance during the rewarming process should lead to immediate return to therapeutic hypothermia. The coincidence of hypodynamic cerebral arteries and others with normal or hyperemic TCD patterns may indicate the presence of focal hypoperfusion that could predict stroke after ROSC.
Collapse
Affiliation(s)
- J A Álvarez-Fernández
- Unidad de Neurosonología y Hemodinámica Cerebral, Hospital Hospiten-Rambla, Santa Cruz de Tenerife, Islas Canarias, España.
| | | | | | | |
Collapse
|