Takeda Y, Kasamo K. In vitro fusion of plant Golgi membranes can be influenced by divalent cations.
J Biol Chem 2002;
277:47756-64. [PMID:
12368278 DOI:
10.1074/jbc.m209199200]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fusogenic activity of plant Golgi membranes was studied in a cell-free system by assaying lipid mixing and content leakages of fluorescence probes. Golgi membranes from mung bean (Vigna radiata L.) hypocotyl cells fused to liposomes in the absence of any cytosolic proteins and nucleotides. It was demonstrated that the fusion was mediated by integral membrane protein(s), and was influenced by divalent cations (mm). Mg(2+), Ca(2+), and Mn(2+) ions enhanced the lipid mixing by reducing repulsive forces between membranes. In the content leakage assay, Mg(2+) ions also showed a stimulative effect. However, other divalent cations were inhibitory. It is suggested that the fusion system of Golgi membranes comprises at least two components: one that mediates the formation of fusion intermediates prior to pore opening, and one that mediates the subsequent processes. The latter must be sensitive to divalent cations at millimolar concentrations. The fusion of Golgi and biological membranes was induced by divalent cations. We speculated about the biological role of the fusion system studied here.
Collapse