1
|
He X, Wang D, Liu J, Shi T, Wang W, Chen B, Li D, Zhang L, Tan GY. Engineering the Methylerythritol Phosphate Pathway and Using a Temporal Promoter for Enhanced Lycopene Production in Rhodobacter sphaeroides HY01. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28040-28047. [PMID: 39626274 DOI: 10.1021/acs.jafc.4c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Rhodobacter sphaeroides HY01 is a high-yield strain for industrial production of coenzyme Q10 (Q10), indicating its potential for producing other terpenoids. However, the production of Q10 substantially depletes isoprene precursors, nearly eliminating other terpenoids like spheroidene and spheroidenone commonly found in wild-type R. sphaeroides. Lycopene was used as an example to demonstrate its potential for terpenoid biosynthesis. By refactoring the methylerythritol phosphate (MEP) pathway, such as overexpressing crtE and introducing crtI4, lycopene production reached 126.1 mg/L in HY01. However, further overexpression of the deoxy-d-xylulose-5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase, and isopentenyl-diphosphate isomerase genes led to strain degradation, significantly reducing lycopene production. Fine-tuning the engineered PrrAB two-component system, which upregulated the MEP pathway, increased lycopene production to 154.9 mg/L. Inspired by this result, a series of native promoters with varying strengths were identified and characterized through transcriptomic analysis during the late fermentation stage. Using these temporal promoters to control genes in the MEP pathway ultimately increased lycopene production to 283.1 mg/L, the highest reported in R. sphaeroides. These results underscore the potential of HY01 as a chassis for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinwei He
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company Limited, Hohhot 010206, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company Limited, Hohhot 010206, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Sarovich DS, Pemberton JM. pPSX: a novel vector for the cloning and heterologous expression of antitumor antibiotic gene clusters. Plasmid 2007; 57:306-13. [PMID: 17218012 DOI: 10.1016/j.plasmid.2006.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
A cosmid cloning vector has been constructed that demonstrates high levels of segregational stability in Escherichia coli K12. pPSX is a 14-kilobase vector derived from the IncW plasmid pR388. pPSX is highly stable in E. coli in the absence of antibiotic selection, even while expressing the toxic indolocarbazole antitumor antibiotic violacein. The incorporation of the lambdacos sequence enables construction of cosmid libraries with inserts ranging from 24 to 36kb. The inclusion of a lacZalpha multiple cloning site (MCS) allows blue/white screening. pPSX cosmids can be extracted from the host cell with commercial plasmid extraction kits facilitating downstream analysis, sequencing and sub-cloning. pPSX can be transferred to a variety of heterologous hosts by either electroporation or mobilization from E. coli S17-1. While it is unstable in non-E. coli hosts without antibiotic selection, heterologous host strains such as Rhodobacter sphaeroides and Pseudomonas stutzeri will maintain the plasmid under antibiotic selection to allow screening of expressed inserts. pPSX provides the benefits of large insert sizes with high stability to allow cloning of chemotherapeutic gene clusters in E. coli and a range of other heterologous hosts.
Collapse
Affiliation(s)
- Derek S Sarovich
- Department of Microbiology and Parasitology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
3
|
Abstract
Carotenoids represent one of the most widely distributed and structurally diverse classes of natural pigments, with important functions in photosynthesis, nutrition, and protection against photooxidative damage. In the eubacterial community, yellow, orange, and red carotenoids are produced by anoxygenic photosynthetic bacteria, cyanobacteria, and certain species of nonphotosynthetic bacteria. Many eukaryotes, including all algae and plants, as well as some fungi, also synthesize these pigments. In noncarotenogenic organisms, such as mammals, birds, amphibians, fish, crustaceans, and insects, dietary carotenoids and their metabolites also serve important biological roles. Within the last decade, major advances have been made in the elucidation of the molecular genetics, the biochemistry, and the regulation of eubacterial carotenoid biosynthesis. These developments have important implications for eukaryotes, and they make increasingly attractive the genetic manipulation of carotenoid content for biotechnological purposes.
Collapse
Affiliation(s)
- G A Armstrong
- Institute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), Zürich.
| |
Collapse
|
4
|
Armstrong GA. Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol 1994; 176:4795-802. [PMID: 8050991 PMCID: PMC196312 DOI: 10.1128/jb.176.16.4795-4802.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The opportunities to understand eubacterial carotenoid biosynthesis and apply the lessons learned in this field to eukaryotes have improved dramatically in the last several years. On the other hand, many questions remain. Although the pigments illustrated in Fig. 2 represent only a small fraction of the carotenoids found in nature, the characterization of eubacterial genes required for their biosynthesis has not yet been completed. Identifying those eukaryotic carotenoid biosynthetic mutants, genes, and enzymes that have no eubacterial counterparts will also prove essential for a full description of the biochemical pathways (81). Eubacterial crt gene regulation has not been studied in detail, with the notable exceptions of M. xanthus and R. capsulatus (5, 33, 39, 45, 46, 84). Determination of the rate-limiting reaction(s) in carotenoid biosynthesis has thus far yielded species-specific results (12, 27, 47, 69), and the mechanisms of many of the biochemical conversions remain obscure. Predicted characteristics of some carotenoid biosynthesis gene products await confirmation by studying the purified proteins. Despite these challenges, (over)expression of eubacterial or eukaryotic carotenoid genes in heterologous hosts has already created exciting possibilities for the directed manipulation of carotenoid levels and content. Such efforts could, for example, enhance the nutritional value of crop plants or yield microbial production of novel and desirable pigments. In the future, the functional compatibility of enzymes from different organisms will form a central theme in the genetic engineering of carotenoid pigment biosynthetic pathways.
Collapse
Affiliation(s)
- G A Armstrong
- Department of Plant Genetics, Swiss Federal Institute of Technology (ETH), Zürich
| |
Collapse
|
5
|
Affiliation(s)
- G Sandmann
- Botanisches Institut, FB Biologie, J.W. Goethe Universität, Frankfurt, Germany
| |
Collapse
|
6
|
Garí E, Gibert I, Barbé J. Spontaneous and reversible high-frequency frameshifts originating a phase transition in the carotenoid biosynthesis pathway of the phototrophic bacterium Rhodobacter sphaeroides 2.4.1. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:74-80. [PMID: 1552906 DOI: 10.1007/bf00299139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis of carotenoids in strain 2.4.1 of the phototrophic bacterium Rhodobacter sphaeroides is spontaneously turned on and off at a high frequency (10(-5) per cell per generation) giving rise alternatively to red (wild type) and green (mutant) clones. The crtD gene is not functional in green mutants as a consequence of the spontaneous addition of a guanosine in a stretch of seven guanosines located in the 5'-terminal coding region of this gene originating a frameshift. All spontaneous wild-type revertants isolated from green mutants had recovered the crtD gene function by loss of one of these reiterated guanosines. The transition Crt(+)----Crt(-)----Crt+, is strain-dependent, since Crt+ clones were not detected in ethyl methane sulphonate (EMS)-induced CrtD- mutants of two other strains of R. sphaeroides (WS22 and RS630) which harbour a recombinant plasmid containing the crtD gene from a spontaneous CrtD- mutant of strain 2.4.1 of R. sphaeroides.
Collapse
Affiliation(s)
- E Garí
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Spain
| | | | | |
Collapse
|
7
|
A gene from the photosynthetic gene cluster ofRhodobacter sphaeroides inducestrans suppression of bacteriochlorophyll and carotenoid levels inR. sphaeroides andR. capsulatus. Curr Microbiol 1991. [DOI: 10.1007/bf02092027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Wu YQ, MacGregor BJ, Donohue TJ, Kaplan S, Yen B. Genetic and physical mapping of the Rhodobacter sphaeroides photosynthetic gene cluster from R-prime pWS2. Plasmid 1991; 25:163-76. [PMID: 1924554 DOI: 10.1016/0147-619x(91)90010-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmid pWS2 is an R68.45 chimera originally isolated as an R-prime which complemented the Rhodobacter sphaeroides bch-420 allele. Our experiments have shown that pWS2 is also able to complement a wide range of R. sphaeroides pigment and photosynthetic mutants employing nitrosoquanidine, transposon or insertion-generated mutations effecting puhA, puc, puf, cycA, bch, and crt genes. A combination of orthogonal-field-alternation gel electrophoresis, transverse alternating field gel electrophoresis, and conventional electrophoresis have been used to estimate the size of pWS2 at congruent to 168.3 +/- 3.5 kb. A restriction map of the congruent to 109 kb of R. sphaeroides insert DNA was generated by partial and complete restriction endonuclease digestion coupled with Southern hybridization analysis using either gene-specific or junction fragment probes. Genes encoding bacteriochlorophyll (Bchl)-binding proteins (pufBALMX, pucBA, and puhA), cytochrome c2 (cycA), and enzymes involved in Bchl (bch) and carotenoid (crt) biosynthesis have been shown to reside within a contiguous 53-kb region of the R. sphaeroides DNA present on pWS2. The puf operon lies at one end of the 53-kb segment, while the genes puhA, cycA, and pucBA, the latter two of which are located within congruent to 12.0 kb of each other, define the other end of this 53-kb region. The genetic and physical mapping data provided in this paper are discussed in terms of the similarities and differences in the organization of the photosynthetic gene cluster between R. sphaeroides and other photosynthetic bacteria as well as highlighting the use of pWS2 in studies of photosynthetic gene structure and function.
Collapse
Affiliation(s)
- Y Q Wu
- Shanghai Institute of Plant Physiology, Academia Sinica, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Coomber SA, Chaudhri M, Connor A, Britton G, Hunter CN. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 1990; 4:977-89. [PMID: 2170816 DOI: 10.1111/j.1365-2958.1990.tb00670.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four genes essential for bacteriochlorophyll biosynthesis were known to be encoded within a 45 kb region of the Rhodobacter sphaeroides genome, the boundaries of which are defined by puh and puf genes for reaction-centre and light-harvesting LH1 complexes. The cluster is represented by eight overlapping inserts cloned in the mobilizable vector pSUP202. We have used localized transposon Tn5 mutagenesis to characterize this cluster further; a total of 87 independent insertions were generated which identify nine genes for bacteriochlorophyll biosynthesis, six for carotenoid biosynthesis, and puhA encoding the reaction-centre H subunit. This work provides an essential framework for a detailed study of the structure and expression of genes for photosynthesis in this bacterium.
Collapse
Affiliation(s)
- S A Coomber
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
11
|
Suwanto A, Kaplan S. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol 1989; 171:5840-9. [PMID: 2553662 PMCID: PMC210444 DOI: 10.1128/jb.171.11.5840-5849.1989] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Four restriction endonucleases, AseI (5'-ATTAAT), SpeI (5'-ACTAGT), DraI (5'-TTTAAA), and SnaBI (5'-TACGTA), generated DNA fragments of suitable size distributions for mapping the genome of Rhodobacter sphaeroides by transverse alternating field electrophoresis. AseI produced 17 fragments, ranging in size from 3 to 1,105 kilobases (kb), SpeI yielded 16 fragments (12 to 1,645 kb), DraI yielded at least 25 fragments (6 to 800 kb), and SnaBI generated 10 fragments (12 to 1,225 kb). A total genome size of approximately 4,400 +/- 112 kb was determined by summing the fragment lengths in each of the digests generated by using the different restriction endonucleases. The total genomic DNA consisted of chromosomal DNA (3,960 +/- 112 kb) and the five endogenous plasmids (approximately 450 kb total) whose cognate DNA fragments have been unambiguously identified. A number of genes have been physically mapped to the AseI-generated restriction endonuclease fragments of total genomic DNA by Southern hybridization analysis with either homologous or heterologous specific gene probes or, in the case of several auxotrophic and pigment-biosynthetic mutants apparently generated by Tn5, a Tn5-specific probe. Other genes have been mapped by a comparison with wild-type patterns of the electrophoretic banding patterns of the AseI-digested genomic DNA derived from mutants generated by the insertion of either kanamycin or spectinomycin-streptomycin resistance cartridges. The relative orientations, distance, and location of the pufBALMX, puhA, cycA, and pucBA operons have also been determined, as have been the relative orientations between prkB and hemT and between prkA and the fbc operon.
Collapse
Affiliation(s)
- A Suwanto
- Department of Microbiology, University of Illinois, Urbana-Champaign 61801
| | | |
Collapse
|
12
|
Construction of a physical map of the 45 kb photosynthetic gene cluster of Rhodobacter sphaeroides. Arch Microbiol 1989. [DOI: 10.1007/bf00416606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Armstrong GA, Alberti M, Leach F, Hearst JE. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:254-68. [PMID: 2747617 DOI: 10.1007/bf00334364] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carotenoid pigments are essential for the protection of both photosynthetic and non-photosynthetic tissues from photooxidative damage. Although carotenoid biosynthesis has been studied in many organisms from bacteria to higher plants, little is known about carotenoid biosynthetic enzymes, or the nature and regulation of the genes encoding them. We report here the first DNA sequence of carotenoid genes from any organism. We have determined the complete nucleotide sequence (11,039 bp) of a gene cluster encoding seven of the eight previously known carotenoid genes (crtA, B, C, D, E, F, I) and a new gene, designated crtK, from Rhodobacter capsulatus, a purple non-sulfur photosynthetic bacterium. The 5' flanking regions of crtA, I, D and E contain a highly conserved palindromic sequence homologous to the consensus binding site for a variety of prokaryotic DNA-binding regulatory proteins. This putative regulatory palindrome is also found 5' to the puc operon, encoding the light-harvesting II antenna polypeptides. Escherichia coli-like sigma 70 promoter sequences are located 5' to crtI and crtD, suggesting for the first time that such promoters may exist in purple photosynthetic bacteria. The crt genes form a minimum of four distinct operons, crtA, crtIBK, crtDC and crtEF, based on inversions of transcriptional orientation within the gene cluster. Possible rho-independent transcription terminators are located 3' to crtI, B, K, C and F. The 3' end of crtA may overlap transcription initiation signals for a downstream gene required for bacteriochlorophyll biosynthesis. We have also observed two regions of exceptional amino acid homology between CrtI and CrtD, both of which are dehydrogenases.
Collapse
Affiliation(s)
- G A Armstrong
- Department of Chemistry, University of California, Berkeley
| | | | | | | |
Collapse
|
14
|
Kiley PJ, Varga A, Kaplan S. Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 1988; 170:1103-15. [PMID: 3277945 PMCID: PMC210879 DOI: 10.1128/jb.170.3.1103-1115.1988] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two mutants of Rhodobacter sphaeroides defective in formation of light-harvesting spectral complexes were examined in detail. Mutant RS103 lacked the B875 spectral complex despite the fact that substantial levels of the B875-alpha polypeptide (and presumably the beta polypeptide) were present. The B800-850 spectral complex was derepressed in RS103, even at high light intensities, and the growth rate was near normal at high light intensity but decreased relative to the wild type as the light intensity used for growth decreased. Mutant RS104 lacked colored carotenoids and the B800-850 spectral complex, as well as the cognate apoproteins. This strain grew normally at high light intensity and, as with RS103, the growth rate decreased as the light intensity used for growth decreased. At very low light intensities, however, RS104 would grow, whereas RS103 would not. Structural analysis of these mutants as well as others revealed that the morphology of the intracytoplasmic membrane invaginations is associated with the presence or absence of the B800-850 complex as well as of carotenoids. A low-molecular-weight intracytoplasmic membrane polypeptide, which may play a role in B800-850 complex formation, is described, as is a 62,000-dalton polypeptide whose abundance is directly related to light intensity as well as the absence of either of the light-harvesting spectral complexes. These data, obtained from studies of mutant strains and the wild type, are discussed in light of photosynthetic membrane formation and the abundance of spectral complexes per unit area of membrane. Finally, a method for the bulk preparation of the B875 complex from wild-type strain 2.4.1 is reported.
Collapse
Affiliation(s)
- P J Kiley
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
15
|
AL-ZAAG A, Pemberton JM. Molecular analysis of an aesculinase activity from Klebsiella oxytoca. Lett Appl Microbiol 1988. [DOI: 10.1111/j.1472-765x.1988.tb01203.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Donohue TJ, Kiley PJ, Kaplan S. The puf operon region of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 1988; 19:39-61. [PMID: 24425367 DOI: 10.1007/bf00114568] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/1987] [Accepted: 03/11/1988] [Indexed: 06/03/2023]
Abstract
The puf operon of the purple nonsulfur photosynthetic bacterium, Rhodobacter sphaeroides, contains structural gene information for at least two functionally distinct bacteriochlorophyll-protein complexes (light harvesting and reaction center) which are present in a fixed ratio within the photosynthetic intracytoplasmic membrane. Two proximal genes (pufBA) specify subunits of a long wavelength absorbing (i.e., 875 nm) light harvesting complex which are present in the photosynthetic membrane in ≃15 fold excess relative to the reaction center subunits which are encoded by the pufLM genes. This review summarizes recent studies aimed at determining how expression of the R. sphaeroides puf operon region relates to the ratio of individual bacteriochlorophyll-protein complexes found within the photosynthetic membrane. These experiments indicate that puf operon expression may be regulated at the transcriptional, post-transcriptional, translation and post-translational levels. In addition, this review discusses the possible role(s) of newly identified loci upstream of pufB which may be involved in regulating either synthesis or assembly of individual bacteriochrlorophyll-protein complexes as well as the pufX gene, the most distal genetic element within the puf operon whose function is still unknown.
Collapse
Affiliation(s)
- T J Donohue
- Bactoriology Department, University of Wisconsin, 1550 Linden Drive, 53706, Madison, WI, USA
| | | | | |
Collapse
|
17
|
Expression ofRhodopseudomonas sphaeroides carotenoid photopigment genes in phylogenetically related nonphotosynthetic bacteria. Curr Microbiol 1987. [DOI: 10.1007/bf01589363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|