1
|
Zhong V, Ketchum N, Mackenzie JK, Garcia X, Rowley PA. Inhibition of diastatic yeasts by Saccharomyces killer toxins to prevent hyperattenuation during brewing. Appl Environ Microbiol 2024; 90:e0107224. [PMID: 39264169 PMCID: PMC11497815 DOI: 10.1128/aem.01072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Secondary fermentation in beer can result in undesirable consequences, such as off-flavors, increased alcohol content, hyperattenuation, gushing, and the spontaneous explosion of packaging. Strains of Saccharomyces cerevisiae var. diastaticus are a major contributor to such spoilage due to their production of extracellular glucoamylase enzyme encoded by the STA1 gene. Saccharomyces yeasts can naturally produce antifungal proteins named "killer" toxins that inhibit the growth of competing yeasts. Challenging diastatic yeasts with killer toxins revealed that 91% of strains are susceptible to the K1 killer toxin produced by S. cerevisiae. Screening of 192 killer yeasts identified novel K2 toxins that could inhibit all K1-resistant diastatic yeasts. Variant K2 killer toxins were more potent than the K1 and K2 toxins, inhibiting 95% of diastatic yeast strains tested. Brewing trials demonstrated that adding killer yeast during a simulated diastatic contamination event could prevent hyperattenuation. Currently, most craft breweries can only safeguard against diastatic yeast contamination by good hygiene and monitoring for the presence of diastatic yeasts. The detection of diastatic yeasts will often lead to the destruction of contaminated products and the aggressive decontamination of brewing facilities. Using killer yeasts in brewing offers an approach to safeguard against product loss and potentially remediate contaminated beer.IMPORTANCEThe rise of craft brewing means that more domestic beer in the marketplace is being produced in facilities lacking the means for pasteurization, which increases the risk of microbial spoilage. The most damaging spoilage yeasts are "diastatic" strains of Saccharomyces cerevisiae that cause increased fermentation (hyperattenuation), resulting in unpalatable flavors such as phenolic off-flavor, as well as over-carbonation that can cause exploding packaging. In the absence of a pasteurizer, there are no methods available that would avert the loss of beer due to contamination by diastatic yeasts. This manuscript has found that diastatic yeasts are sensitive to antifungal proteins named "killer toxins" produced by Saccharomyces yeasts, and in industrial-scale fermentation trials, killer yeasts can remediate diastatic yeast contamination. Using killer toxins to prevent diastatic contamination is a unique and innovative approach that could prevent lost revenue to yeast spoilage and save many breweries the time and cost of purchasing and installing a pasteurizer.
Collapse
Affiliation(s)
- Victor Zhong
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | | - James K. Mackenzie
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ximena Garcia
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
2
|
Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses. Toxins (Basel) 2017; 9:toxins9080233. [PMID: 28757599 PMCID: PMC5577567 DOI: 10.3390/toxins9080233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus–host and virus–virus interplays.
Collapse
|
3
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Improved wine yeasts by direct mating and selection under stressful fermentative conditions. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2596-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Solieri L, Verspohl A, Bonciani T, Caggia C, Giudici P. Fast method for identifying inter- and intra-species Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding. J Appl Microbiol 2015; 119:149-61. [PMID: 25892524 DOI: 10.1111/jam.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/05/2023]
Abstract
AIMS The present work proposes a two-step molecular strategy to select inter- and intra-species Saccharomyces hybrids obtained by spore-to-spore mating, one of the most used methods for generating improved hybrids from homothallic wine yeasts. METHODS AND RESULTS As low spore viability and haplo-selfing are the main causes of failed mating, at first, we used colony screening PCR (csPCR) of discriminative gene markers to select hybrids directly on dissection plate and discard homozygous diploid colonies arisen from one auto-diploidized progenitor. Then, pre-selected candidates were submitted to recursive streaking and conventional PCR in order to discriminate between the hybrids with stable genomic background and the false-positive admixtures of progenitor cells both undergone haplo-selfing. csPCRs of internal transcribed spacer (ITS) 1 or 2, and the subsequent digestion with diagnostic endonucleases HaeIII and RsaI, respectively, were efficient to select six new Saccharomyces cerevisiae × Saccharomyces uvarum hybrids from 64 crosses. Intragenic minisatellite regions in PIR3, HSP150, and DAN4 genes showed high inter-strain size variation detectable by cost-effective agarose gel electrophoresis and were successful to validate six new intra-species S. cerevisiae hybrids from 34 crosses. CONCLUSIONS Both protocols reduce significantly the number of massive DNA extractions, prevent misinterpretations caused by one or both progenitors undergone haplo-selfing, and can be easily implemented in yeast labs without any specific instrumentation. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a method for the marker-assisted selection of several inter- and intra-species yeast hybrids in a cost-effective, rapid and reproducible manner.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - A Verspohl
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - T Bonciani
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - C Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - P Giudici
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| |
Collapse
|
6
|
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38:947-95. [PMID: 24724938 PMCID: PMC4293462 DOI: 10.1111/1574-6976.12073] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Tim Snoek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Martina Picca Nicolino
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| |
Collapse
|
7
|
McBride RC, Boucher N, Park DS, Turner PE, Townsend JP. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res 2013; 13:162-79. [PMID: 23122216 DOI: 10.1111/1567-1364.12019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Viruses that infect fungi have a ubiquitous distribution and play an important role in structuring fungal communities. Most of these viruses have an unusual life history in that they are propagated exclusively via asexual reproduction or fission of fungal cells. This asexual mode of transmission intimately ties viral reproductive success to that of its fungal host and should select for viruses that have minimal deleterious impact on the fitness of their hosts. Accordingly, viral infections of fungi frequently do not measurably impact fungal growth, and in some instances, increase the fitness of the fungal host. Here we determine the impact of the loss of coinfection by LA virus and the virus-like particle M1 upon global gene expression of the fungal host Saccharomyces cerevisiae and provide evidence supporting the idea that coevolution has selected for viral infection minimally impacting host gene expression.
Collapse
Affiliation(s)
- Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
8
|
Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 2010; 88:849-57. [PMID: 20803138 DOI: 10.1007/s00253-010-2850-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Yeast, such as Saccharomyces cerevisiae or Kluyveromyces lactis is appropriate strain for ethanol production or some useful compounds production. Cellulases expressing yeast can ferment ethanol from cellulosic materials; however, the productivity should be increase more and more. To improve and engineer the productivity, the target gene(s) were introduced into yeast genome. Generally, using genetic engineering, increasing integrated gene numbers are increased, the expressed protein ability such as enzymatic activities are also increased. In this mini-review, we focused on the effect of integrated gene copy number and the polyploidy on the productivity such as enzymatic activity and/or product yield.
Collapse
|
9
|
Bajaj BK, Sharma S. Construction of killer industrial yeast Saccharomyces cerevisiae hau-1 and its fermentation performance. Braz J Microbiol 2010; 41:477-85. [PMID: 24031519 PMCID: PMC3768693 DOI: 10.1590/s1517-838220100002000030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 04/10/2009] [Accepted: 11/08/2009] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.
Collapse
Affiliation(s)
- Bijender K Bajaj
- Department of Biotechnology, University of Jammu , Jammu-186 001 , India
| | | |
Collapse
|
10
|
Hashimoto S, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R. Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2005; 69:689-96. [PMID: 15988574 DOI: 10.1007/s00253-005-0039-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/27/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATalpha mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.
Collapse
Affiliation(s)
- Shinji Hashimoto
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Santos A, Marquina D. Killer toxin of Pichia membranifaciens and its possible use as a biocontrol agent against grey mould disease of grapevine. MICROBIOLOGY-SGM 2004; 150:2527-2534. [PMID: 15289549 DOI: 10.1099/mic.0.27071-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of Pichia membranifaciens CYC 1106 killer toxin against Botrytis cinerea was investigated. This strain exerted a broad-specificity killing action against other yeasts and fungi. At pH 4, optimal killer activity was observed at temperatures up to 20 degrees C. At 25 degrees C the toxic effect was reduced to 70%. The killer activity was higher in acidic medium. Above about pH 4.5 activity decreased sharply and was barely noticeable at pH 6. The killer toxin protein from P. membranifaciens CYC 1106 was purified to electrophoretic homogeneity. SDS-PAGE of the purified killer protein indicated an apparent molecular mass of 18 kDa. Killer toxin production was stimulated in the presence of non-ionic detergents. The toxin concentrations present in the supernatant during optimal production conditions exerted a fungicidal effect on a strain of B. cinerea. The symptoms of infection and grey mould observed in Vitis vinifera plants treated with B. cinerea were prevented in the presence of purified P. membranifaciens killer toxin. The results obtained suggest that P. membranifaciens CYC 1106 killer toxin is of potential use in the biocontrol of B. cinerea.
Collapse
Affiliation(s)
- A Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid 28040, Spain
| | - D Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid 28040, Spain
| |
Collapse
|
12
|
Domingues L, Vicente AA, Lima N, Teixeira JA. Applications of yeast flocculation in biotechnological processes. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|