1
|
Tang T, Martinenghi LD, Hounmanou YMG, Leisner JJ. Distribution and ecology of the generalist lactic acid bacterium Carnobacterium maltaromaticum in different freshwater habitats: Metabolic and antagonistic abilities. Environ Microbiol 2023; 25:3556-3576. [PMID: 37750577 DOI: 10.1111/1462-2920.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
We explored the distribution, metabolic and antagonistic activities of Carnobacterium maltaromaticum, isolated from freshwater locations in Denmark during winter or early spring. This species was widely distributed in such habitats although it was relatively rare in low pH locations. Isolates possessed a diverse metabolism, potentially enabling functional capacities independent of habitat. The intraspecies competition showed a relatively high degree of mostly low-intensity interactions, which overall were not correlated with phylogeny or location. Only a few isolates exhibited broad-spectrum inhibition activity, targeting species from other genera and families, including one isolate that exhibited a broad inhibitory activity due to H2 O2 production. Bioinformatic analyses revealed that the frequency of bacteriocinogenic systems was low, and only one unmodified bacteriocin, piscicolin 126, correlated with phenotypic antagonistic activity. Furthermore, most potential bacteriocin gene complexes were not complete. Overall, this study showed C. maltaromaticum to be a generalist (nomadic) species with a constant presence in freshwater habitats, especially those with pH values >5. General metabolic properties did not suggest a strong degree of adaptation to the freshwater environment, and bacteriocin-mediated antagonistic activities appeared to play a minimal ecological role.
Collapse
Affiliation(s)
- Taya Tang
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura Daniela Martinenghi
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yaovi Mahuton Gildas Hounmanou
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jørgen J Leisner
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Lin J, Luo X, Gänzle MG, Luo L. Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism. Appl Microbiol Biotechnol 2020; 104:8775-8787. [PMID: 32880693 DOI: 10.1007/s00253-020-10868-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
The halophilic lactic acid bacterium Tetragenococcus halophilus has been widely used in high-salinity fermentation processes of food. Previous studies have indicated that the catabolism of arginine may contribute to the osmotic stress adaptation of T. halophilus. Unusually, in the chromosome of T. halophilus, preceding the arginine deiminase (ADI) operon, locate two co-transcribed genes, both encoding an ArgR regulator; similar structure was rarely found and the roles of the regulators have not been demonstrated. In the current study, regulatory roles of these two nonidentical ArgR regulators on the arginine metabolism of T. halophilus were investigated. The results show that these two regulators play different roles in arginine metabolism, ArgR1 acts as a negative regulator of the ADI pathway by binding to the promoter sequences and repressing the transcription of genes, and the addition of arginine or hyper-osmotic stress conditions can abolish the ArgR1 repression, whereas ArgR2 negatively regulates the genes involved in arginine biosynthesis. Our study found that despite the commonly known roles of the ArgR regulators as the activator of arginine catabolism and the repressor of arginine biosynthesis, which are found in most studied bacteria possessed one ArgR regulator, the two nonidentical ArgR regulators of T. halophilus both act as repressors, and the repression by which is regulated when sensing changes of environments. By revealing the regulation of arginine metabolism, the current study provides molecular insights and potential tools for future applications of halophiles in biotechnology. KEY POINTS: • The expression of the ADI pathway of T. halophilus is regulated by carbon sources and osmotic stress. • The arginine metabolism process of T. halophilus is fine-tuned by the two ArgR regulators. • The ADI pathway may contribute to the osmotic stress adaptation by generating more energy and accumulating citrulline which acts as compatible solute.
Collapse
Affiliation(s)
- Jieting Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Xiaotong Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Girardeau A, Puentes C, Keravec S, Peteuil P, Trelea IC, Fonseca F. Influence of culture conditions on the technological properties of Carnobacterium maltaromaticum CNCM I-3298 starters. J Appl Microbiol 2019; 126:1468-1479. [PMID: 30762266 DOI: 10.1111/jam.14223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study is to investigate the effect of a broad spectrum of culture conditions on the acidification activity and viability of Carnobacterium maltaromaticum CNCM I-3298, the main technological properties that determine the shelf-life of biological time-temperature integrator (TTI) labels. METHODS AND RESULTS Cells were cultivated at different temperatures (20-37°C) and pH (6-9·5) according to a modified central composite design and harvested at increasing times up to 10 h of stationary phase. Acidification activity and viability of freeze-thawed concentrates were assessed in medium mimicking the biological label. Acidification activity was influenced by all three culture conditions, but pH and harvest time were the most influential. Viability was not significantly affected by the tested range of culture conditions. CONCLUSIONS Carnobacterium maltaromaticum CNCM I-3298 must be cultivated at 20°C, pH 6 and harvested at the beginning of stationary phase to exhibit fastest acidification activities. However, if slower acidification activities are pursued, the recommended culture conditions are 30°C, pH 9·5 and a harvest time between 4-6 h of stationary phase. SIGNIFICANCE AND IMPACT OF THE STUDY Quantifying the impact of fermentation temperature, pH and harvest time has led to a predictive model for the production of biological TTI covering a broad range of shelf-lives.
Collapse
Affiliation(s)
- A Girardeau
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France.,CRYOLOG, R&D Department, Nantes, France
| | - C Puentes
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - S Keravec
- CRYOLOG, R&D Department, Nantes, France
| | - P Peteuil
- CRYOLOG, R&D Department, Nantes, France
| | - I C Trelea
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - F Fonseca
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
4
|
Liang R, Yu X, Wang R, Luo X, Mao Y, Zhu L, Zhang Y. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C. J Food Prot 2012; 75:1057-62. [PMID: 22691472 DOI: 10.4315/0362-028x.jfp-11-439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.
Collapse
Affiliation(s)
- Rongrong Liang
- Professional Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Leisner J, Hansen M, Larsen M, Hansen L, Ingmer H, Sørensen S. The genome sequence of the lactic acid bacterium, Carnobacterium maltaromaticum ATCC 35586 encodes potential virulence factors. Int J Food Microbiol 2012; 152:107-15. [DOI: 10.1016/j.ijfoodmicro.2011.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/25/2023]
|
6
|
The kinetics of the arginine deiminase pathway in the meat starter culture Lactobacillus sakei CTC 494 are pH-dependent. Food Microbiol 2011; 28:597-604. [DOI: 10.1016/j.fm.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022]
|
7
|
Laursen BG, Byrne DV, Kirkegaard JB, Leisner JJ. Lactic acid bacteria associated with a heat-processed pork product and sources of variation affecting chemical indices of spoilage and sensory characteristics. J Appl Microbiol 2010; 106:543-53. [PMID: 19200320 DOI: 10.1111/j.1365-2672.2008.04045.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the potential for developing a quality index for a Danish modified atmosphere packaged (MAP) heat-processed and naturally contaminated pork meat product stored at 5 degrees C. METHODS AND RESULTS The composition of the predominating microflora and changes in contents of tyramine, arginine, organic acids and sensory characteristics were analysed. The microflora was predominated by Lactobacillus sakei, Leuconostoc carnosum and Carnobacterium divergens. The presence of each species varied between products and batches resulting in limited usefulness of the concentrations of these bacteria or their metabolites as indices of quality. Furthermore, the three species differed in their metabolic activities as shown by use of a model meat extract. However, when MAP storage of the processed pork product was followed by aerobic storage then acetic acid showed some potential as a chemical indicator of sensory quality. CONCLUSION Variation in processing parameters and spoilage microbiota limited the usefulness of concentrations of micro-organisms and their metabolites as indices of spoilage for the studied processed MAP pork product. SIGNIFICANCE AND IMPACT OF THE STUDY The present study contributes to an understanding of the difficulties experienced in developing quality indices to be used in the control of microbial spoilage of processed MAP meat products.
Collapse
Affiliation(s)
- B G Laursen
- Department of Veterinary Pathobiology, Food Microbiology, Faculty of Life Sciences, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
8
|
Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiol 2009; 26:783-93. [DOI: 10.1016/j.fm.2009.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 04/28/2009] [Accepted: 05/04/2009] [Indexed: 11/18/2022]
|
9
|
Abstract
Lactic acid bacteria (LAB) constitute a diverse group of Gram positive obligately fermentative microorganisms which include both beneficial and pathogenic strains. LAB generally have complex nutritional requirements and therefore they are usually associated with nutrient-rich environments such as animal bodies, plants and foodstuffs. Amino acids represent an important resource for LAB and their utilization serves a number of physiological roles such as intracellular pH control, generation of metabolic energy or redox power, and resistance to stress. As a consequence, the regulation of amino acid catabolism involves a wide set of both general and specific regulators and shows significant differences among LAB. Moreover, due to their fermentative metabolism, LAB amino acid catabolic pathways in some cases differ significantly from those described in best studied prokaryotic model organisms such as Escherichia coli or Bacillus subtilis. Thus, LAB amino acid catabolism constitutes an interesting case for the study of metabolic pathways. Furthermore, LAB are involved in the production of a great variety of fermented products so that the products of amino acid catabolism are also relevant for the safety and the quality of fermented products.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias CSIC, Crta de Infiesto s/n, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
10
|
Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P. Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 2007; 31:592-613. [PMID: 17696886 PMCID: PMC2040187 DOI: 10.1111/j.1574-6976.2007.00080.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genus Carnobacterium contains nine species, but only C. divergens and C. maltaromaticum are frequently isolated from natural environments and foods. They are tolerant to freezing/thawing and high pressure and able to grow at low temperatures, anaerobically and with increased CO2 concentrations. They metabolize arginine and various carbohydrates, including chitin, and this may improve their survival in the environment. Carnobacterium divergens and C. maltaromaticum have been extensively studied as protective cultures in order to inhibit growth of Listeria monocytogenes in fish and meat products. Several carnobacterial bacteriocins are known, and parameters that affect their production have been described. Currently, however, no isolates are commercially applied as protective cultures. Carnobacteria can spoil chilled foods, but spoilage activity shows intraspecies and interspecies variation. The responsible spoilage metabolites are not well characterized, but branched alcohols and aldehydes play a partial role. Their production of tyramine in foods is critical for susceptible individuals, but carnobacteria are not otherwise human pathogens. Carnobacterium maltaromaticum can be a fish pathogen, although carnobacteria are also suggested as probiotic cultures for use in aquaculture. Representative genome sequences are not yet available, but would be valuable to answer questions associated with fundamental and applied aspects of this important genus.
Collapse
Affiliation(s)
- Jørgen J Leisner
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C., Denmark.
| | | | | | | | | |
Collapse
|
11
|
Laursen BG, Leisner JJ, Dalgaard P. Carnobacterium species: effect of metabolic activity and interaction with Brochothrix thermosphacta on sensory characteristics of modified atmosphere packed shrimp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:3604-3611. [PMID: 19127732 DOI: 10.1021/jf053017f] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The importance of carnobacteria as spoilage microorganisms or potential protective cultures in food is not resolved, and little is known about their metabolism during growth in specific products. This study used chromatographic techniques including GC-MS and HPLC to evaluate the spoilage metabolism of Carnobacterium divergens, Carnobacterium maltaromaticum, and Carnobacterium mobile. Metabolic activity was studied in cooked and peeled modified atmosphere packed (MAP) shrimp at 5 degrees C as carnobacteria has been anticipated to contribute to spoilage of shrimp products. C. divergens and C. maltaromaticum caused sensory spoilage of shrimps and generated ammonia, tyramine, and various alcohols, aldehydes, and ketones. The effects of Carnobacterium species on the growth and metabolism of Brochothrix thermosphacta were also evaluated, but metabiosis between the two groups of bacteria was not observed. C. mobile and a specific cluster of C. maltaromaticum isolates (cluster L) did not cause sensory spoilage of shrimp.
Collapse
Affiliation(s)
- Birgit Groth Laursen
- Department of Seafood Research, Danish Institute for Fisheries Research, Lyngby, Denmark
| | | | | |
Collapse
|
12
|
Laursen BG, Bay L, Cleenwerck I, Vancanneyt M, Swings J, Dalgaard P, Leisner JJ. Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: phenotypic and genotypic characterization. Syst Appl Microbiol 2005; 28:151-64. [PMID: 15830808 DOI: 10.1016/j.syapm.2004.12.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carnobacterium, a genus of lactic acid bacteria, frequently dominate the microflora of chilled vacuum- or modified atmosphere-packed meat and seafood. In this study Carnobacterium isolates were characterized by phenotypic and molecular methods in order to investigate the association of species and intra-species groups with distinct kinds of meat and seafood. Of 120 test strains, 50 originated from meat (beef and pork products, including 44 strains isolated during this study and 6 strains obtained from culture collections) and 52 from seafoods (cod, halibut, salmon, shrimps and roe products). In addition, 9 reference strains of Carnobacterium spp from other sources than meat and fish and 9 reference strains of lactic acid bacteria belonging to other genera than Carnobacterium were included. Numerical taxonomy relying on classical biochemical reactions, carbohydrate fermentation and inhibition tests (temperature, salt, pH, chemical preservatives, antibiotics, bacteriocins), SDS-PAGE electrophoresis of whole cell proteins, plasmid profiling, intergenic spacer region (ISR) analysis and examination of amplified-fragment length polymorphism (AFLP) were employed to characterize the strains. The numerical taxonomic approach divided the carnobacteria strains into 24 groups that shared less than 89% similarity. These groups were identified as Carnobacterium divergens with one major cluster (40 strains) and 7 branches of one to four strains, Carnobacterium maltaromaticum (previous C. piscicola) with one major cluster (37 strains) and 9 branches of one to four strains and Carnobacterium mobile (three branches consisting in total of 4 strains). Branches consisting of references strains of the remaining Carnobacterium spp. were separated from clusters and branches of C. divergens, C. maltaromaticum and C. mobile. Isolates from the main clusters of C. divergens and C. maltaromaticum were found both in fresh and lightly preserved meat and seafood products. High phenotypic intra-species variability was observed for C. divergens and C. maltaromaticum but despite this heterogeneity in phenotypic traits a reliable identification to species levels was obtained by SDS-PAGE electrophoresis of whole cell proteins and by ISR based on 16S-23S rDNA intergenic spacer region polymorphism. With AFLP, two distinct clusters were observed for C. divergens but only one for C. maltaromaticum. The two C. divergens clusters were not identical to any of the clusters observed by numerical taxonomy. A limited number of C. divergens and C. maltaromaticum isolates possessed a biopreservative potential due to their production of bacteriocins with a wide inhibition spectrum. This study serves as a base-line for further investigations on the potential role of species of Carnobacterium in foods where they predominate the spoilage microflora.
Collapse
Affiliation(s)
- Birgit Groth Laursen
- Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University, Grønnegårdsvej 15, 1870 Frederiksberg (Copenhagen), Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Dalgaard P, Vancanneyt M, Euras Vilalta N, Swings J, Fruekilde P, Leisner JJ. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C. J Appl Microbiol 2003; 94:80-9. [PMID: 12492927 DOI: 10.1046/j.1365-2672.2003.01806.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To evaluate spoilage and identify lactic acid bacteria (LAB) from spoilage associations of cooked and brined shrimps stored under modified atmosphere packaging (MAP) at 0, 5, 8, 15 and 25 degrees C. METHODS AND RESULTS Bacterial isolates (102) from spoilage associations of cooked and brined MAP shrimps were characterized by phenotypic tests and identified as lactic acid bacteria (78 isolates), other Gram-positive bacteria (13 isolates) and Gram-negative bacteria (11 isolates). A selection of 48 LAB isolates were further characterized and identified by phenotypic tests and SDS-PAGE electrophoresis of whole cell proteins. Selected clusters of LAB isolates were analysed by plasmid profiling, pulsed field gel electrophoresis and 16S rRNA gene sequencing. Enterococcus faecalis was identified in spoilage associations at 15 degrees C and 25 degrees C, and its metabolic activity corresponded to chemical changes in spoiled products. Carnobacterium divergens, a non-motile Carnobacterium sp. nov. and Lactobacillus curvatus were the LAB species observed in spoilage associations of products stored at 0 degrees C, 5 degrees C and 8 degrees C. CONCLUSIONS Enterococcus spp. and Carnobacterium spp. were the dominant parts of spoilage associations of cooked and brined MAP shrimps stored at high and low temperatures, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The SDS-PAGE technique and simple biochemical keys allowed the majority of LAB isolates from spoilage associations of cooked and brined MAP shrimps to be identified at the species level.
Collapse
Affiliation(s)
- P Dalgaard
- Department of Seafood Research, Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rollán G, Gobbetti M. Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 2002; 68:6193-201. [PMID: 12450844 PMCID: PMC134416 DOI: 10.1128/aem.68.12.6193-6201.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 09/10/2002] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed all three enzyme activities. Lactobacillus plantarum B14 did not show CK activity. L. sanfranciscensis CB1 showed the highest activities, and the three enzymes were purified from this microorganism to homogeneity by several chromatographic steps. ADI, OTC, and CK had apparent molecular masses of ca. 46, 39, and 37 kDa, respectively, and the pIs were in the range of 5.07 to 5.2. The OTCs, CKs, and especially ADIs were well adapted to pH (acidic, pH 3.5 to 4.5) and temperature (30 to 37 degrees C) conditions which are usually found during sourdough fermentation. Internal peptide sequences of the three enzymes had the highest level of homology with ADI, OTC, and CK of Lactobacillus sakei. L. sanfranciscensis CB1 expressed the ADI pathway either on MAM broth containing 17 mM arginine or during sourdough fermentation with 1 to 43 mM added arginine. Two-dimensional electrophoresis showed that ADI, OTC, and CK were induced by factors of ca. 10, 4, and 2 in the whole-cell extract of cells grown in MAM broth containing 17 mM arginine compared to cells cultivated without arginine. Arginine catabolism in L. sanfranciscensis CB1 depended on the presence of a carbon source and arginine; glucose at up to ca. 54 mM did not exert an inhibitory effect, and the pH was not relevant for induction. The pH of sourdoughs fermented by L. sanfranciscensis CB1 was dependent on the amount of arginine added to the dough. A low supply of arginine (6 mM) during sourdough fermentation by L. sanfranciscensis CB1 enhanced cell growth, cell survival during storage at 7 degrees C, and tolerance to acid environmental stress and favored the production of ornithine, which is an important precursor of crust aroma compounds.
Collapse
Affiliation(s)
- Maria De Angelis
- Sezione di Microbiologia Agro-Alimentare, Dipartimento di Scienze degli Alimenti, Università degli Studi di Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The arginine catabolism of Thermanaerovibrio acidaminovorans was investigated. T. acidaminovorans was able to produce approximately 0.4--0.5 mol citrulline and 0.5--0.6 mol ornithine from 1 mol of arginine. However, in a methanogenic coculture with Methanobacterium thermoautotrophicum Z245 1 mol arginine was converted to approximately 1 mol of propionate, 0.5 mol acetate, 4 mol ammonia and 4 mol hydrogen; citrulline and ornithine were not formed. Enzyme measurements indicated the presence of the arginine deiminase pathway (ADI) in cells of T. acidaminovorans growing on arginine.
Collapse
Affiliation(s)
- C M Plugge
- Laboratory of Microbiology, Wageningen University, H. van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands.
| | | |
Collapse
|
16
|
Champomier Vergès MC, Zuñiga M, Morel-Deville F, Pérez-Martínez G, Zagorec M, Ehrlich SD. Relationships between arginine degradation, pH and survival in Lactobacillus sakei. FEMS Microbiol Lett 1999; 180:297-304. [PMID: 10556725 DOI: 10.1111/j.1574-6968.1999.tb08809.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lactobacillus sakei is one of the most important lactic acid bacteria of meat and fermented meat products. It is able to degrade arginine with ammonia and ATP production by the arginine deiminase pathway (ADI). This pathway is composed of three enzymes: arginine deiminase, ornithine transcarbamoylase and carbamate kinase, and an arginine transport system. The transcription of the ADI pathway is induced by arginine and subjected to catabolite repression. In order to understand the physiological role of the degradation of this amino acid we investigated the growth of bacteria under various conditions. We show that arginine degradation is responsible for an enhanced viability during the stationary phase when cells are grown under anaerobiosis. Arginine is necessary for the induction of the ADI pathway but in association with another environmental signal. Using a mutant of the L-lactate dehydrogenase unable to lower the pH we could clearly demonstrate that (i) low pH is not responsible for cell death during the stationary phase, so survival is due to another factor than elevated pH, (ii) neither low pH nor oxygen limitation is responsible for the induction of the ADI pathway together with arginine since the ldhL mutant is able to degrade arginine under aerobiosis.
Collapse
Affiliation(s)
- M C Champomier Vergès
- Laboratoire de Recherches sur la Viande, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352, Jouy en Josas, France.
| | | | | | | | | | | |
Collapse
|
17
|
Leroi F, Joffraud JJ, Chevalier F, Cardinal M. Study of the microbial ecology of cold-smoked salmon during storage at 8 degrees C. Int J Food Microbiol 1998; 39:111-21. [PMID: 9562883 DOI: 10.1016/s0168-1605(97)00126-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbiological, chemical and sensory changes in cold-smoked salmon were studied during 5 weeks of vacuum storage at 8 degrees C. The aerobic 20 degrees C viable count reached its maximum level after 6 days (3 x 10(6) cfu g-1) however, the shelf-life of the product was estimated to be 2 or 3 weeks by the panellists, confirming that there is no correlation between those two factors. Acid, pungent, sour and rancid odours and flavours and pasty texture were the main spoilage characteristics. Trimethylamine did not play a major role in the spoilage mechanisms as only small amounts were produced. Two-hundred and seventy strains were collected over the storage period, purified and characterized. During the first 2 weeks, Gram-negative bacteria were dominant, mainly represented by S. putrefaciens immediately after the smoking process and then P. phosphoreum. Aeromonas spp. were present throughout the storage but in smaller amounts. Gram-negative bacteria then progressively decreased while Gram-positive bacteria, dominated by lactic acid bacteria (LAB), became by far the most common variety found. Carnobacterium piscicola was widely represented (97/155 LAB isolates). A diversification was observed at the end of the storage, with the appearance of L. farciminis, L. sake and L. alimentarius. Occurrence of yeasts and moulds was quite rare. Spoilage potential of the strains was tested on a sterile smoked salmon extract juice. Shewanella putrefaciens, Aeromonas spp. and Brachothrix spp. produced strong off-odours while most of the LAB and P. phosphoreum seemed not to be involved in spoilage.
Collapse
Affiliation(s)
- F Leroi
- Laboratoire de Génie Alimentaire, Ifremer, Nantes, France.
| | | | | | | |
Collapse
|