1
|
Trachta M, Bludský O, Rubeš M. The interaction of proteins with silica surfaces. Part II: Free energies of capped amino acids. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2018.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Afrin R, Ganbaatar N, Aono M, Cleaves Ii HJ, Yano TA, Hara M. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface. Int J Mol Sci 2018; 19:ijms19020365. [PMID: 29370126 PMCID: PMC5855587 DOI: 10.3390/ijms19020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022] Open
Abstract
The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces.
Collapse
Affiliation(s)
- Rehana Afrin
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Narangerel Ganbaatar
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | - Masashi Aono
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan.
| | - H James Cleaves Ii
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Taka-Aki Yano
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | - Masahiko Hara
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| |
Collapse
|
3
|
Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction. ORIGINS LIFE EVOL B 2017; 48:23-34. [DOI: 10.1007/s11084-017-9548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
4
|
Kitadai N, Oonishi H, Umemoto K, Usui T, Fukushi K, Nakashima S. Glycine Polymerization on Oxide Minerals. ORIGINS LIFE EVOL B 2017; 47:123-143. [PMID: 27473494 DOI: 10.1007/s11084-016-9516-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022]
Abstract
It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3+ group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.
Collapse
Affiliation(s)
- Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Hiroyuki Oonishi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Koichiro Umemoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tomohiro Usui
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
5
|
Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Hall SA, Jena KC, Covert PA, Roy S, Trudeau TG, Hore DK. Molecular-Level Surface Structure from Nonlinear Vibrational Spectroscopy Combined with Simulations. J Phys Chem B 2014; 118:5617-36. [DOI: 10.1021/jp412742u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shaun A. Hall
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Kailash C. Jena
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Paul A. Covert
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Sandra Roy
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Travis G. Trudeau
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Dennis K. Hore
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| |
Collapse
|
7
|
Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 2013; 113:4216-313. [PMID: 23289428 DOI: 10.1021/cr3003054] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Rode BM, Son HL, Suwannachot Y. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. ORIGINS LIFE EVOL B 1999; 29:273-86. [PMID: 10465717 DOI: 10.1023/a:1006540101290] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two reactions with suggested prebiotic relevance for peptide evolution, the salt induced peptide formation reaction and the peptide chain elongation/stabilization on clay minerals have been combined in experimental series starting from dipeptides and dipeptide/amino acid mixtures. The results show that both reactions can take place simultaneously in the same reaction environment and that the presence of mineral catalysts favours the formation of higher oligopeptides. These findings lend further support to the relevance of these reactions for peptide evolution on the primitive earth. The detailed effects of the specific clay mineral depend both on the nature of the mineral and the reactants in solution.
Collapse
Affiliation(s)
- B M Rode
- Institute for General, Inorganic and Theoretical Chemistry University of Innsbruck, Austria
| | | | | |
Collapse
|
10
|
Smith JV. Biochemical evolution. I. Polymerization On internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc Natl Acad Sci U S A 1998; 95:3370-5. [PMID: 9520372 PMCID: PMC19842 DOI: 10.1073/pnas.95.7.3370] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.
Collapse
Affiliation(s)
- J V Smith
- Department of Geophysical Sciences and Center for Advanced Radiation Sources, 5734 S. Ellis Avenue, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|