1
|
Dash RP, Thomas JA, Rosenfeld C, Srinivas NR. Protein Binding and Stability of Drug Candidates: The Achilles' Heel in In Vitro Potency Assays. Eur J Drug Metab Pharmacokinet 2021; 45:427-432. [PMID: 32270425 DOI: 10.1007/s13318-020-00619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present scenario of drug discovery, several screening filters ensure a rigorous nomination of clinical candidates. One of these screens is the determination of IC50, the concentration of drug at half-maximal inhibitory concentration, also known as a potency assay. However, various nuances pertaining to the design, execution, and interpretation of in vitro potency results suggest a sizeable opportunity for the generation of erroneous data. The focus areas of this article include: (1) examining the requirement for the addition of serum albumin in in vitro potency assays, (2) problems encountered with cell lysates, and (3) drug candidate stability concerns during in vitro potency assays/high-throughput screening. Based on this assessment, the interpretation of the data generated using cell-based systems (i.e., lysates with or without the addition of fetal bovine serum) should be carried out with caution for in vitro potency testing, and the inclusion of a correction factor for non-specific protein binding should be considered. The addition of serum albumin to a cell-free system should be restricted to drugs having high protein binding (≥ 90%). Additionally, stability assessment of analytes should be considered to avoid dubious in vitro potency outcomes due to degraded material or active metabolite(s).
Collapse
Affiliation(s)
- Ranjeet P Dash
- ADME-DMPK, Charles River Laboratories, Ashland, OH, 44805, USA
| | | | | | - Nuggehally R Srinivas
- Department of Innovation and Technology, Jubilant Life Sciences, D-12 Sector 59a, Noida, Uttar Pradesh, 201301, India. .,Kenox Pharmaceuticals Inc., 11 Deerpark Dr, Suite 128, Princeton Corporate Plaza, Monmouth Junction, NJ, 08852, USA.
| |
Collapse
|
2
|
Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, Chai X, Wu Y, Cai J, Cheng G. Antimicrobial Activity and Resistance: Influencing Factors. Front Pharmacol 2017; 8:364. [PMID: 28659799 PMCID: PMC5468421 DOI: 10.3389/fphar.2017.00364] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 01/09/2023] Open
Abstract
Rational use of antibiotic is the key approach to improve the antibiotic performance and tackling of the antimicrobial resistance. The efficacy of antimicrobials are influenced by many factors: (1) bacterial status (susceptibility and resistance, tolerance, persistence, biofilm) and inoculum size; (2) antimicrobial concentrations [mutant selection window (MSW) and sub-inhibitory concentration]; (3) host factors (serum effect and impact on gut micro-biota). Additional understandings regarding the linkage between antimicrobial usages, bacterial status and host response offers us new insights and encourage the struggle for the designing of antimicrobial treatment regimens that reaching better clinical outcome and minimizing the emergence of resistance at the same time.
Collapse
Affiliation(s)
- Jun Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Funan Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Chaonan Zhang
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Ximan Chai
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Yalan Wu
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Jinxia Cai
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China.,Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
3
|
Abstract
Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested.
Collapse
|