1
|
Salánki K, Gellért Á, Huppert E, Náray-Szabó G, Balázs E. Compatibility of the movement protein and the coat protein of cucumoviruses is required for cell-to-cell movement. J Gen Virol 2004; 85:1039-1048. [PMID: 15039546 DOI: 10.1099/vir.0.19687-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the cell-to-cell movement of cucumoviruses both the movement protein (MP) and the coat protein (CP) are required. These are not reversibly exchangeable between Cucumber mosaic virus (CMV) and Tomato aspermy virus (TAV). The MP of CMV is able to function with the TAV CP (chimera RT), but TAV MP is unable to promote the cell-to-cell movement in the presence of CMV CP (chimera TR). To gain further insight into the non-infectious nature of the TR recombinant, RNA 3 chimeras were constructed with recombinant MPs and CPs. The chimeric MP and one of the CP recombinants were infectious. The other recombinant CP enabled virus movement only after the introduction of two point mutations (Glu-->Lys and Lys-->Arg at aa 62 and 65, respectively). The mutations served to correct the CP surface electrostatic potential that was altered by the recombination. The infectivity of the TR virus on different test plants was restored by replacing the sequence encoding the C-terminal 29 aa of the MP with the corresponding sequence of the CMV MP gene or by exchanging the sequence encoding the C-terminal 15 aa of the CP with the same region of TAV. The analysis of the recombinant clones suggests a requirement for compatibility between the C-terminal 29 aa of the MP and the C-terminal two-thirds of the CP for cell-to-cell movement of cucumoviruses.
Collapse
Affiliation(s)
- Katalin Salánki
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Ákos Gellért
- Department of Theoretical Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Emese Huppert
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Gábor Náray-Szabó
- Protein Modelling Group, Hungarian Academy of Sciences - Eötvös Lóránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ervin Balázs
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Abstract
Research on the molecular biology of cucumoviruses and their plant-virus interactions has been very extensive in the last decade. Cucumovirus genome structures have been analyzed, giving new insights into their genetic variability, evolution, and taxonomy. A new viral gene has been discovered, and its role in promoting virus infection has been delineated. The localization and various functions of each viral-encoded gene product have been established. The particle structures of Cucumber mosaic virus (CMV) and Tomato aspermy virus have been determined. Pathogenicity domains have been mapped, and barriers to virus infection have been localized. The movement pathways of the viruses in some hosts have been discerned, and viral mutants affecting the movement processes have been identified. Host responses to viral infection have been characterized, both temporally and spatially. Progress has been made in determining the mechanisms of replication, gene expression, and transmission of CMV. The pathogenicity determinants of various satellite RNAs have been characterized, and the importance of secondary structure in satellite RNA-mediated interactions has been recognized. Novel plant genes specifying resistance to infection by CMV have been identified. In some cases, these genes have been mapped, and one resistance gene to CMV has been isolated and characterized. Pathogen-derived resistance has been demonstrated against CMV using various segments of the CMV genome, and the mechanisms of some of these forms of resistances have been analyzed. Finally, the nature of synergistic interactions between CMV and other viruses has been characterized. This review highlights these various achievements in the context of the previous work on the biology of cucumoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Peter Palukaitis
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
| | | |
Collapse
|
3
|
García-Castillo S, Sánchez-Pina MA, Pallás V. Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. J Gen Virol 2003; 84:745-749. [PMID: 12604827 DOI: 10.1099/vir.0.18715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-course and in situ hybridization analyses were used to study the spatio-temporal distribution of Carnation mottle virus (CarMV) in Chenopodium quinoa plants. Genomic and subgenomic RNAs of plus polarity accumulated linearly with time, whereas the corresponding minus strands reached a peak during infection in inoculated leaves. Analyses of serial tissue sections showed that plus polarity strands were localized throughout the infection area, whereas minus strands were localized at the borders of the chlorotic lesions. The accumulation kinetics of the coat protein (CP) and the p7 movement protein (MP) as well as their subcellular localization were also studied. Unlike most MPs, CarMV p7 showed a non-transient expression and a mainly cytosolic location. However, as infection progressed the presence of p7 in the cell wall fraction increased significantly. These results are discussed on the basis of a recent model proposed for the mechanism of cell-to-cell movement operating in the genus Carmovirus.
Collapse
Affiliation(s)
- Silvia García-Castillo
- Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - M Amelia Sánchez-Pina
- Departamento de Mejora y Patología Vegetal, CEBAS (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
4
|
Yoshii M, Yoshioka N, Ishikawa M, Naito S. Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. J Virol 1998; 72:8731-7. [PMID: 9765416 PMCID: PMC110288 DOI: 10.1128/jvi.72.11.8731-8737.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the systemic infection of plants by viruses, host factors play an important role in supporting virus multiplication. To identify and characterize the host factors involved in this process, we isolated an Arabidopsis thaliana mutant named RB663, in which accumulation of the coat protein (CP) of cucumber mosaic virus (CMV) in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in RB663 plants was controlled by a monogenic, recessive mutation designated cum2-1, which is located on chromosome III and is distinct from the previously characterized cum1 mutation. Multiplication of CMV was delayed in inoculated leaves of RB663 plants, whereas the multiplication in RB663 protoplasts was similar to that in wild-type protoplasts. This suggests that the cum2-1 mutation affects the cell-to-cell movement of CMV rather than CMV replication within a single cell. In RB663 plants, the multiplication of turnip crinkle virus (TCV) was also delayed but that of tobacco mosaic virus was not affected. As observed with CMV, the multiplication of TCV was normal in protoplasts and delayed in inoculated leaves of RB663 plants compared to that in wild-type plants. Furthermore, the phenotype of delayed TCV multiplication cosegregated with the cum2-1 mutation as far as we examined. Therefore, the cum2-1 mutation is likely to affect the cell-to-cell movement of both CMV and TCV, implying a common aspect to the mechanisms of cell-to-cell movement in these two distinct viruses.
Collapse
Affiliation(s)
- M Yoshii
- Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
5
|
Itaya, Woo, Masuta, Bao, Nelson, Ding. Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. PLANT PHYSIOLOGY 1998; 118:373-85. [PMID: 9765523 PMCID: PMC34813 DOI: 10.1104/pp.118.2.373] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/1998] [Accepted: 07/01/1998] [Indexed: 05/18/2023]
Abstract
Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.
Collapse
Affiliation(s)
- Itaya
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078 (A.I., Y.-M.W., B.D.)
| | | | | | | | | | | |
Collapse
|
6
|
Yoshii M, Yoshioka N, Ishikawa M, Naito S. Isolation of an Arabidopsis thaliana mutant in which accumulation of cucumber mosaic virus coat protein is delayed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:211-219. [PMID: 9680977 DOI: 10.1046/j.1365-313x.1998.00024.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cucumber mosaic virus (CMV) is known to systemically infect Arabidopsis thaliana ecotype Columbia plants. In order to identify the host factors involved in the multiplication of CMV, we isolated an A. thaliana mutant in which the accumulation of the coat protein (CP) of CMV in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in the mutant plants was caused by a single, nuclear and recessive mutation designated cum1-1, which was located on chromosome IV. The cum1-1 mutation did not affect the multiplication of tobacco mosaic virus, turnip crinkle virus or turnip yellow mosaic virus, which belong to different taxonomic groups from CMV. Accumulation of CMV CP in the inoculated leaves of cum1-1 plants was also delayed either when CMV virion or CMV virion RNA was inoculated. On the other hand, when cum1-1 and the wild-type Col-0 protoplasts were inoculated with CMV virion RNA by electroporation, the accumulations of CMV-related RNAs and the coat protein were similar. These results suggest that the cum1-1 mutation did not affect the uncoating of CMV virion and subsequent replication in an initially infected cell but affected the spreading of CMV within an infected leaf, possibly the cell-to-cell movement of CMV in a virus-specific manner.
Collapse
Affiliation(s)
- M Yoshii
- Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
7
|
Canto T, Prior DA, Hellwald KH, Oparka KJ, Palukaitis P. Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 1997; 237:237-48. [PMID: 9356336 DOI: 10.1006/viro.1997.8804] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
cDNA clones of cucumber mosaic virus (CMV) RNA 3 were modified to express the jellyfish green fluorescent protein (GFP) in place of the 3a movement protein (MP) or coat protein (CP), as fusions to the N (GFP-3a) or C (3a-GFP) terminus of the MP or from a separate open reading frame as part of tricistronic RNAs 3. CMV RNA transcripts containing the individual modified RNAs 3 were unable to infect either Nicotiana tabacum or Nicotiana benthamiana systemically. Infection, as measured by confocal microscopy of GFP fluorescence, generally was limited to one to three epidermal cells at each inoculation site. Limited cell-to-cell movement, but not systemic movement, could be detected by complementation involving expression of MP and CP from two different RNA 3 constructs, each also expressing GFP. Infection involving RNA 3 expressing the GFP-3a fusion showed bright granules of variable size distributed predominantly and nonuniformly throughout the cytoplasm and, to a lesser extent, associated with the cell wall in single fluorescent cells, while infections expressing the 3a-GFP fusion showed bright, punctate fluorescence associated only with the cell wall. Infected cells expressing either 3a-GFP or free GFP showed a halo of less bright, fluorescent, neighboring cells, indicating limited movement of GFP. The initially infected cells also allowed movement of 10-kDa fluorescent dextran to the neighboring halo cells, while infection did not spread, suggesting different requirements for movement of either MP or dextran versus RNA.
Collapse
Affiliation(s)
- T Canto
- Virology Department, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, Scotland
| | | | | | | | | |
Collapse
|
8
|
Rubinson E, Galiakparov N, Radian S, Sela I, Tanne E, Gafny R. Serological detection of grapevine virus a using antiserum to a nonstructural protein, the putative movement protein. PHYTOPATHOLOGY 1997; 87:1041-1045. [PMID: 18945038 DOI: 10.1094/phyto.1997.87.10.1041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Grapevine virus A (GVA) is implicated in the etiology of the rugose wood disease. The coat protein (CP) and the putative movement protein (MP) genes of GVA were cloned and expressed in Escherichia coli and used to produce antisera. Both the CP and the MP were detected with their corresponding antisera in GVA-infected Nicotiana benthamiana. The MP was first detected at an early stage of the infection, 6 to 12 h after inoculation, and the CP was detected 2 to 3 days after inoculation. The CP and MP were detected by immunoblot analysis in rugose wood-affected grapevines. The MP could be detected in GVA-infected grapevines that tested negative for CP, both with CP antiserum and with a commercially available enzyme-linked immunosorbent assay kit. The study shows that detection of the nonstructural MP may be an effective means for serological detection of GVA infection in grapevines.
Collapse
|