1
|
Murphy G, Brayden DJ, Cheung DL, Liew A, Fitzgerald M, Pandit A. Albumin-based delivery systems: Recent advances, challenges, and opportunities. J Control Release 2025; 380:375-395. [PMID: 39842723 DOI: 10.1016/j.jconrel.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Albumin and albumin-based biomaterials have been explored for various applications, including therapeutic delivery, as therapeutic agents, as components of tissue adhesives, and in tissue engineering applications. Albumin has been approved as a nanoparticle containing paclitaxel (Abraxane®), as an albumin-binding peptide (Victoza®), and as a glutaraldehyde-crosslinked tissue adhesive (BioGlue®). Albumin is also approved as a supportive therapy for various conditions, including hypoalbuminemia, sepsis, and acute respiratory distress syndrome (ARDS). However, no other new albumin-based systems in a hydrogel format have been used in the clinic. A review of publicly available clinical trials indicates that no new albumin drug delivery formats are currently in the clinical development pipeline. Although albumin has shown promise as a carrier of therapeutics for various diseases, including diabetes, cancers, and infectious diseases, its potential for treating blood-borne diseases such as HIV and leukemia has not been translated. This review offers a perspective on the use of albumin-based drug delivery systems for a broader range of disease applications, considering the protein properties and a review of the currently approved albumin-based technologies. This review supports ongoing efforts to advance biomedical research and clinical interventions through albumin-based delivery systems.
Collapse
Affiliation(s)
- Gillian Murphy
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland.
| | - David J Brayden
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland; School of Veterinary Medicine and Conway Institute, University College Dublin, Ireland
| | - David L Cheung
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland; School of Biological and Chemical Science, University of Galway, Ireland
| | - Aaron Liew
- Diabetes, Endocrinology and General Internal Medicine, Galway University Hospital, Galway, Ireland
| | | | - Abhay Pandit
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
2
|
Mechanistic examination of methimazole-induced hepatotoxicity in patients with Grave’s disease: a metabolomic approach. Arch Toxicol 2019; 94:231-244. [DOI: 10.1007/s00204-019-02618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
|
3
|
Leonard JA, Tan YM, Gilbert M, Isaacs K, El-Masri H. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling. Toxicol Sci 2016; 151:57-70. [PMID: 26865668 PMCID: PMC4914794 DOI: 10.1093/toxsci/kfw022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T4) and triiodothyronine (T3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T4 and T3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses.
Collapse
Affiliation(s)
- Jeremy A Leonard
- *Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, 37831; National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Yu-Mei Tan
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Mary Gilbert
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Kristin Isaacs
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
4
|
Van Herck SLJ, Geysens S, Bald E, Chwatko G, Delezie E, Dianati E, Ahmed RG, Darras VM. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues. J Endocrinol 2013; 218:105-15. [PMID: 23608220 DOI: 10.1530/joe-13-0089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.
Collapse
Affiliation(s)
- Stijn L J Van Herck
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, PB 2464, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Heidari R, Babaei H, Eghbal M. Mechanisms of methimazole cytotoxicity in isolated rat hepatocytes. Drug Chem Toxicol 2012; 36:403-11. [DOI: 10.3109/01480545.2012.749272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Electrochemical determination of methimazole based on the acetylene black/chitosan film electrode and its application to rat serum samples. Bioelectrochemistry 2011; 81:86-90. [DOI: 10.1016/j.bioelechem.2011.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/01/2011] [Accepted: 04/02/2011] [Indexed: 11/23/2022]
|
7
|
Virkel G, Lifschitz A, Sallovitz J, Ballent M, Scarcella S, Lanusse C. Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep. J Vet Pharmacol Ther 2009; 32:79-86. [PMID: 19161459 DOI: 10.1111/j.1365-2885.2008.01006.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the disposition kinetics and the pattern of metabolism is critical to optimise the flukicidal activity of triclabendazole (TCBZ) in ruminants. TCBZ is metabolised by both flavin-monooxygenase (FMO) and cytochrome P450 (P450) in the liver. Interference with these metabolic pathways may be useful to increase the systemic availabilities of TCBZ metabolites, which may improve the efficacy against Fasciola hepatica. The plasma disposition of TCBZ metabolites was evaluated following TCBZ co-administration with FMO [methimazole (MTZ)] and P450 [piperonyl butoxyde (PB) and ketoconazole (KTZ)] inhibitors in sheep. Twenty (20) healthy Corriedale x Merino weaned female lambs were randomly allocated into four experimental groups. Animals of each group were treated as follow: Group A, TCBZ alone (5 mg/kg, IV route); Group B, TCBZ (5 mg/kg, IV) + MTZ (3 mg/kg, IV); Group C, TCBZ (5 mg/kg, IV) + PB (30 mg/kg, IV) and Group D, TCBZ (5 mg/kg, IV) + KTZ (10 mg/kg, orally). Blood samples were taken over 240 h post-treatment and analysed by HPLC. TCBZ sulphoxide and sulphone were the main metabolites recovered in plasma. MTZ did not affect TCBZ disposition kinetics. TCBZ sulphoxide Cmax values were significantly increased (P < 0.05) after the TCBZ + PB (62%) and TCBZ + KTZ (37%) treatments compared to those measured in the TCBZ alone treatment. TCBZ sulphoxide plasma AUCs were higher (P < 0.05) in the presence of both PB (99%) and KTZ (41%). Inhibition of TCBZ P450-mediated oxidation in the liver accounted for the increased systemic availability of its active metabolite TCBZ sulphoxide. This work contributes to the search of different strategies to improve the use of this flukicidal drug in ruminants.
Collapse
Affiliation(s)
- G Virkel
- Laboratorio de Farmacología, Dpto. de Fisiopatología, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
8
|
Albino CC, Graf H, Sampaio AP, Vigário A, Paz-Filho GJ. Thiamazole as an adjuvant to radioiodine for volume reduction of multinodular goiter. Expert Opin Investig Drugs 2008; 17:1781-6. [DOI: 10.1517/13543780802501325] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Clark SM, Saade GR, Snodgrass WR, Hankins GDV. Pharmacokinetics and Pharmacotherapy of Thionamides in Pregnancy. Ther Drug Monit 2006; 28:477-83. [PMID: 16885714 DOI: 10.1097/00007691-200608000-00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hyperthyroidism occurs in approximately 1 in every 1000 to 2000 pregnancies. Although the signs and symptoms of the disease are similar in the pregnant and nonpregnant patient, the complications of hyperthyroidism can have even more profound consequences for the mother and fetus during gestation. These include maternal heart failure, preeclampsia, miscarriage, and preterm labor; as well as fetal loss and low birth weight. Furthermore, thyroid function and laboratory testing for hyperthyroidism are altered in pregnancy. The gestational increase in thyroid size, increased thyroid-binding globulin levels, increased serum total T4 and total T3 levels, and decreased thyroid stimulating hormone levels often confuses the evaluation of the thyroid status in pregnancy. Worldwide, the thionamides-propylthiouracil, methimazole, and carbimazole-have been used in pregnancy for the treatment of hyperthyroidism. However, propylthiouracil has been the drug of choice in the United States because it is believed to have less potential to induce fetal/neonatal hypothyrodism, to cross the placenta and into breast milk to a lesser degree, and to be less teratogenic than methimazole or carbimazole. None of the above have been substantiated in more recent studies. The pharmacokinetics of the thionamides in the pregnant and nonpregnant states, as well as the pharmacotherapeutic recommendation for hyperthyroidism will be reviewed.
Collapse
Affiliation(s)
- Shannon M Clark
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|