1
|
Sheridan A, Brown AC. Recent Advances in Blood Cell-Inspired and Clot Targeted Thrombolytic Therapies. J Tissue Eng Regen Med 2023; 2023:6117810. [PMID: 37731481 PMCID: PMC10511217 DOI: 10.1155/2023/6117810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood-cells and clotting proteins to effectively target and lyse clots.
Collapse
Affiliation(s)
- Anastasia Sheridan
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
2
|
Aryal S, Nguyen TDT, Pitchaimani A, Shrestha TB, Biller D, Troyer D. Membrane Fusion-Mediated Gold Nanoplating of Red Blood Cell: A Bioengineered CT-Contrast Agent. ACS Biomater Sci Eng 2016; 3:36-41. [DOI: 10.1021/acsbiomaterials.6b00573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Santosh Aryal
- Department
of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506, United States
| | - Tuyen Duong Thanh Nguyen
- Department
of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506, United States
| | - Arunkumar Pitchaimani
- Department
of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506, United States
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 228 Coles Hall, Manhattan, Kansas 66506, United States
| | - Tej B. Shrestha
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 228 Coles Hall, Manhattan, Kansas 66506, United States
| | - David Biller
- Department
of Clinical Sciences, College of Veterinary Medicine, Kansas State University, A-111 Mosier Hall, Manhattan, Kansas 66506, United States
| | - Deryl Troyer
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 228 Coles Hall, Manhattan, Kansas 66506, United States
| |
Collapse
|
3
|
Aryal S, Stigliano C, Key J, Ramirez M, Anderson J, Karmonik C, Fung S, Decuzzi P. Paramagnetic Gd3+ labeled red blood cells for magnetic resonance angiography. Biomaterials 2016; 98:163-70. [DOI: 10.1016/j.biomaterials.2016.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 01/16/2023]
|
4
|
Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 2016; 9:2873-84. [PMID: 27274282 PMCID: PMC4876107 DOI: 10.2147/ott.s104691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ruju Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaohui Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Bhateria M, Rachumallu R, Singh R, Bhatta RS. Erythrocytes-based synthetic delivery systems: transition from conventional to novel engineering strategies. Expert Opin Drug Deliv 2014; 11:1219-36. [PMID: 24912015 DOI: 10.1517/17425247.2014.927436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Erythrocytes (red blood cells [RBCs]) and artificial or synthetic delivery systems such as liposomes, nanoparticles (NPs) are the most investigated carrier systems. Herein, progress made from conventional approach of using RBC as delivery systems to novel approach of using synthetic delivery systems based on RBC properties will be reviewed. AREAS COVERED We aim to highlight both conventional and novel approaches of using RBCs as potential carrier system. Conventional approaches which include two main strategies are: i) directly loading therapeutic moieties in RBCs; and ii) coupling them with RBCs whereas novel approaches exploit structural, mechanical and biological properties of RBCs to design synthetic delivery systems through various engineering strategies. Initial attempts included coupling of antibodies to liposomes to specifically target RBCs. Knowledge obtained from several studies led to the development of RBC membrane derived liposomes (nanoerythrosomes), inspiring future application of RBC or its structural features in other attractive delivery systems (hydrogels, filomicelles, microcapsules, micro- and NPs) for even greater potential. EXPERT OPINION In conclusion, this review dwells upon comparative analysis of various conventional and novel engineering strategies in developing RBC based drug delivery systems, diversifying their applications in arena of drug delivery. Regardless of the challenges in front of us, RBC based delivery systems offer an exciting approach of exploiting biological entities in a multitude of medical applications.
Collapse
Affiliation(s)
- Manisha Bhateria
- CSIR-Central Drug Research Institute, Pharmacokinetics & Metabolism Division , B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow - 226031 , India +91 522 2771940 Ext-4853 ; +91 522 2771941 ; ,
| | | | | | | |
Collapse
|
6
|
Abstract
Cell systems have recently emerged as biological drug carriers, as an interesting alternative to other systems such as micro- and nano-particles. Different cells, such as carrier erythrocytes, bacterial ghosts and genetically engineered stem and dendritic cells have been used. They provide sustained release and specific delivery of drugs, enzymatic systems and genetic material to certain organs and tissues. Cell systems have potential applications for the treatment of cancer, HIV, intracellular infections, cardiovascular diseases, Parkinson’s disease or in gene therapy. Carrier erythrocytes containing enzymes such us L-asparaginase, or drugs such as corticosteroids have been successfully used in humans. Bacterial ghosts have been widely used in the field of vaccines and also with drugs such as doxorubicin. Genetically engineered stem cells have been tested for cancer treatment and dendritic cells for immunotherapeutic vaccines. Although further research and more clinical trials are necessary, cell-based platforms are a promising strategy for drug delivery.
Collapse
|
7
|
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
8
|
Rossi L, Serafini S, Pierigé F, Antonelli A, Cerasi A, Fraternale A, Chiarantini L, Magnani M. Erythrocyte-based drug delivery. Expert Opin Drug Deliv 2006; 2:311-22. [PMID: 16296756 DOI: 10.1517/17425247.2.2.311] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of a physiological carrier to deliver therapeutics throughout the body to both improve their efficacy while minimising inevitable adverse side effects, is an extremely fascinating perspective. The behaviour of erythrocytes as a delivery system for several classes of molecules (i.e., proteins, including enzymes and peptides, therapeutic agents in the form of nucleotide analogues, glucocorticoid analogues) has been studied extensively as they possess several properties, which make them unique and useful carriers. Furthermore, the possibility of using carrier erythrocytes for selective drug targeting to differentiated macrophages increases the opportunities to treat intracellular pathogens and to develop new drugs. Finally, the availability of an apparatus that permits the encapsulation of drugs into autologous erythrocytes has made this technology available in many clinical settings and competitive with other drug delivery systems.
Collapse
Affiliation(s)
- Luiga Rossi
- Università degli Studi di Urbino Carlo Bo, Istituto di Chimica Biologica G Fornaini, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Millán CG, Marinero MLS, Castañeda AZ, Lanao JM. Drug, enzyme and peptide delivery using erythrocytes as carriers. J Control Release 2004; 95:27-49. [PMID: 15013230 DOI: 10.1016/j.jconrel.2003.11.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/25/2003] [Indexed: 11/21/2022]
Abstract
Erythrocytes are potential biocompatible vectors for different bioactive substances, including drugs. These can be used successfully as biological carriers of drugs, enzymes and peptides. There are currently diverse methods that permit drug encapsulation in erythrocytes with an appropriate yield. The methods most commonly employed are based on a high-haematocrit dialysis procedure, mainly hypo-osmotic dialysis. Erythrocytes loaded with drugs and other substances allow for different release rates to be obtained. Encapsulation in erythrocytes significantly changes the pharmacokinetic properties of drugs in both animals and humans, enhancing liver and spleen uptake and targeting the reticulo-endothelial system (RES). Amongst other applications, erythrocytes have been used for drug-targeting the RES with aminoglycoside antibiotics; the selective transport to certain organs and tissues of certain antineoplastic drugs, such as methotrexate, doxorubicine, etoposide, carboplatin, etc.; the encapsulation of angiotensin-converting enzyme (ACE) inhibitors, systemic corticosteroids, the encapsulation of new prodrugs with increased duration of action, etc. Erythrocytes are also attractive systems in the sense of their potential ability to deliver proteins and therapeutic peptides. Thus, erythrocytes have been used for the transport of enzymes destined for the correction of metabolic alterations as l-asparaginase, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AlDH) among others. Erythrocytes have been used successfully as carriers of anti-HIV peptides, such as AZT, nucleoside analogues, antisense oligonucleotides, antineoplastic peptides, erythropoietin, interleukin 3, etc. Amongst other applications, mention may be made of paramagnetic erythrocytes, encapsulation of MRI contrast agents or the study of the metabolism of the red cell. Although erythrocytes have been applied with different uses in human medicine, their deployment is still very limited due to difficulties involving storage, its exposure to contamination and the absence of a validated industrial procedure for its preparation.
Collapse
Affiliation(s)
- Carmen Gutiérrez Millán
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain
| | | | | | | |
Collapse
|