1
|
Knippenberg S, Fabre G, Osella S, Di Meo F, Paloncýová M, Ameloot M, Trouillas P. Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9072-9084. [PMID: 29983063 DOI: 10.1021/acs.langmuir.8b01164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By reverting to spectroscopy, changes in the biological environment of a fluorescent probe can be monitored and the presence of various phases of the surrounding lipid bilayer membranes can be detected. However, it is currently not always clear in which phase the probe resides. The well-known orange 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate (DiI-C18(5)) fluorophore, for instance, and the new, blue BODIPY (4,4-difluoro-4-bora-3 a,4 a-diaza- s-indacene) derivative were experimentally seen to target and highlight identical parts of giant unilamellar vesicles of various compositions, comprising mixtures of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), and cholesterol (Chol). However, it was not clear which of the coexisting membrane phases were visualized (Bacalum et al., Langmuir. 2016, 32, 3495). The present study addresses this issue by utilizing large-scale molecular dynamics simulations and the z-constraint method, which allows evaluating Gibbs free-energy profiles. The current calculations give an indication why, at room temperature, both BODIPY and DiI-C18(5) probes prefer the gel (So) phase in DOPC/DPPC (2:3 molar ratio) and the liquid-ordered (Lo) phase in DOPC/SM/Chol (1:2:1 molar ratio) mixtures. This study highlights the important differences in orientation and location and therefore in efficiency between the probes when they are used in fluorescence microscopy to screen various lipid bilayer membrane phases. Dependent on the lipid composition, the angle between the transition-state dipole moments of both probes and the normal to the membrane is found to deviate clearly from 90°. It is seen that the DiI-C18(5) probe is located in the headgroup region of the SM/Chol mixture, in close contact with water molecules. A fluorescence anisotropy study also indicates that DiI-C18(5) gives rise to a distinctive behavior in the SM/Chol membrane compared to the other considered membranes. The latter behavior has not been seen for the studied BODIPY probe, which is located deeper in the membrane.
Collapse
Affiliation(s)
- S Knippenberg
- Department of Theoretical Chemistry and Biology , KTH Royal Institute of Technology , Roslagstullsbacken 15 , S-106 91 Stockholm , Sweden
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - G Fabre
- LCSN-EA1069, Faculty of Pharmacy , Limoges University , 2 rue du Dr. Marcland , 87025 Limoges Cedex , France
| | - S Osella
- Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | - F Di Meo
- Faculty of Pharmacy , INSERM UMR 1248, Limoges University , 2 rue du Docteur Marcland , 87025 Limoges Cedex , France
| | - M Paloncýová
- Department of Theoretical Chemistry and Biology , KTH Royal Institute of Technology , Roslagstullsbacken 15 , S-106 91 Stockholm , Sweden
| | - M Ameloot
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - P Trouillas
- Faculty of Pharmacy , INSERM UMR 1248, Limoges University , 2 rue du Docteur Marcland , 87025 Limoges Cedex , France
- Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University , tř. 17 listopadu 12 , 771 46 Olomouc , Czech Republic
| |
Collapse
|
2
|
Gaburjakova J, Gaburjakova M. Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2018. [DOI: 10.1016/bs.abl.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Hirano-Iwata A, Ishinari Y, Yoshida M, Araki S, Tadaki D, Miyata R, Ishibashi K, Yamamoto H, Kimura Y, Niwano M. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces. Biophys J 2017; 110:2207-15. [PMID: 27224486 DOI: 10.1016/j.bpj.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/26/2022] Open
Abstract
Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins.
Collapse
Affiliation(s)
- Ayumi Hirano-Iwata
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan.
| | - Yutaka Ishinari
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Miyu Yoshida
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Shun Araki
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Daisuke Tadaki
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Ryusuke Miyata
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | | | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Yasuo Kimura
- Department of Electric and Electronic Engineering, School of Engineering, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Michio Niwano
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan; Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Aoba, Sendai, Japan
| |
Collapse
|
4
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049009021851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Gullapalli RR, Demirel MC, Butler PJ. Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer. Phys Chem Chem Phys 2008; 10:3548-60. [PMID: 18548161 DOI: 10.1039/b716979e] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We performed a 40 ns simulation of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C18(3)) in a 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) bilayer in order to facilitate interpretation of lipid dynamics and membrane structure from fluorescence lifetime, anisotropy, and fluorescence correlations spectroscopy (FCS). Incorporation of DiI of 1.6 to 3.2 mol% induced negligible changes in area per lipid but detectable increases in bilayer thickness, each of which are indicators of membrane structural perturbation. The DiI chromophore angle was 77 +/- 17 degrees with respect to the bilayer normal, consistent with rotational diffusion inferred from polarization studies. The DiI headgroup was located 0.63 nm below the lipid head group-water interface, a novel result in contrast to some popular cartoon representations of DiI but consistent with DiI's increase in quantum yield when incorporated into lipid bilayers. Importantly, the fast component of rotational anisotropy matched published experimental results demonstrating that sufficient free volume exists at the sub-interfacial region to support fast rotations. Simulations with non-charged DiI head groups exhibited DiI flip-flop, demonstrating that the positively-charged chromophore stabilizes the orientation and location of DiI in a single monolayer. DiI induced detectable changes in interfacial properties of water ordering, electrostatic potential, and changes in P-N vector orientation of DPPC lipids. The diffusion coefficient of DiI (9.7 +/- 0.02 x 10(-8) cm2 s(-1)) was similar to the diffusion of DPPC molecules (10.7 +/- 0.04 x 10(-8) cm2 s(-1)), supporting the conclusion that DiI dynamics reflect lipid dynamics. These results provide the first atomistic level insight into DiI dynamics, results essential in elucidating lipid dynamics through single molecule fluorescence studies.
Collapse
Affiliation(s)
- Ramachandra R Gullapalli
- Department of Bioengineering, The Pennsylvania State University, 228 Hallowell Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
7
|
Lentz BR, Lee JK. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membr Biol 1999; 16:279-96. [PMID: 10766128 DOI: 10.1080/096876899294508] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Membrane fusion is fundamental to the life of eukaryotic cells. Cellular trafficking and compartmentalization, import of food stuffs and export of waste, inter-cellular communication, sexual reproduction, and cell division are all dependent on this basic process. Yet, little is known about the molecular mechanism(s) by which fusion occurs. It is known that fusing membranes must somehow be docked and brought into close contact. Specific proteins, many of which have been identified within the past decade, accomplish this. An electrical connection or 'fusion pore' is established between compartments surrounded by the fusing membranes. Three primary views of the mechanism of pore formation during secretory and viral fusion have been proposed within the past decade. In one view, a protein ring forms an initial transient connection that expands slowly by recruiting lipid so as to form a lipidic junction. In another view, the initial fusion pore consists of a protein-lipid complex that transforms slowly until the fusion proteins dissociate from the complex to form an irreversible lipidic pore. In a third view, the initial pore is a transient lipid pore that fluctuates between open and closed states before either expanding irreversibly or closing. Recent work has helped define the mechanism by which poly(ethylene glycol) (PEG) mediates fusion of highly curved model membranes composed only of synthetic phospholipids. PEG is a highly hydrated polymer that can bring vesicle membranes to near molecular contact by making water between them thermodynamically unfavourable. Disrupted packing in the contacting monolayers of these vesicle membranes is necessary to induce fusion. The time course and sequence of molecular events of the ensuing fusion process have also been defined. This sequence of events involves the formation of an initial, transient intermediate in which outer leaflet lipids have mixed and small transient pores join fusing compartments ('stalk'). The transient intermediate transforms in 1-3 min to a fusion-committed, second intermediate ('septum') that then 'pops' to form the fusion pore. Inner leaflet mixing, which is shown to be distinct from outer leaflet mixing, accompanies contents mixing that marks formation of the fusion pore. Both the sequence of events and the activation energies of these events correspond well to those observed in viral membrane fusion and secretory granule fusion. These results strongly support the contention that both viral and secretory fusion events occur by lipid molecule rearrangements that can be studied and defined through the use of PEG-mediated vesicle fusion as a model system. A possible mechanism by which fusion proteins might mediate this lipidic process is described.
Collapse
Affiliation(s)
- B R Lentz
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, 27599-7260, USA.
| | | |
Collapse
|
8
|
Chanturiya A, Chernomordik LV, Zimmerberg J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc Natl Acad Sci U S A 1997; 94:14423-8. [PMID: 9405628 PMCID: PMC25008 DOI: 10.1073/pnas.94.26.14423] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For the act of membrane fusion, there are two competing, mutually exclusive molecular models that differ in the structure of the initial pore, the pathway for ionic continuity between formerly separated volumes. Because biological "fusion pores" can be as small as ionic channels or gap junctions, one model posits a proteinaceous initial fusion pore. Because biological fusion pore conductance varies widely, another model proposes a lipidic initial pore. We have found pore opening and flickering during the fusion of protein-free phospholipid vesicles with planar phospholipid bilayers. Fusion pore formation appears to follow the coalescence of contacting monolayers to create a zone of hemifusion where continuity between the two adherent membranes is lipidic, but not aqueous. Hypotonic stress, causing tension in the vesicle membrane, promotes complete fusion. Pores closed soon after opening (flickering), and the distribution of fusion pore conductance appears similar to the distribution of initial fusion pores in biological fusion. Because small flickering pores can form in the absence of protein, the existence of small pores in biological fusion cannot be an argument in support of models based on proteinaceous pores. Rather, these results support the model of a lipidic fusion pore developing within a hemifused contact site.
Collapse
Affiliation(s)
- A Chanturiya
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Abstract
Computer simulation of model membranes was used to evaluate the possible mechanism of lipid bilayer fusion. The simplified two dimensional model of the membrane cross section was used as an analog of three dimensional reality. Lipid molecules were represented by rod-like structures, and forces between them were limited to attraction/repulsion interactions described by a simple energy function with a minimum; 300-400 molecules were modeled in every simulation. Using the energy minimization procedure, it was possible to obtain stable linear or circular bilayer structures (two dimensional analogs of planar membranes and liposomes). In response to changes in attraction/repulsion equilibrium between molecules these bilayers were able to reorganize via cooperative process. By increasing the headgroup attraction parameter for contacting monolayers, it was possible to induce formation of a zone of hemifusion in the area of bilayer contact. The possible correlation between cooperative bilayer rearrangement in the model and in real bilayers is discussed.
Collapse
Affiliation(s)
- A N Chanturiya
- Laboratory of Cellular and Molecular Biophysics, NICHD/NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
10
|
Lee J, Lentz BR. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 1997; 36:6251-9. [PMID: 9174340 DOI: 10.1021/bi970404c] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sequence of events involved in poly(ethylene glycol)-mediated fusion of small unilamellar vesicles (SUVs) has been studied. Fusion events were monitored using light scattering for vesicle aggregation, the fluorescence lifetime of membrane probe lipids (DPHpPC and NBD-PS) for membrane mixing, the aqueous fluorescent marker (Tb3+/DPA and H+/HPTS) for contents mixing; and quasi-elastic light scattering for the change in the size of vesicles. Poly(ethylene glycol) is a highly hydrated polymer that can bring vesicle membranes to near molecular contact but is unable to induce vesicle fusion without manipulations that reduce packing density and encourage molecular motions in the backbone regions of both contacting membrane leaflets. Once this condition is achieved, the sequence of events involved in vesicle fusion is shown here to be (1) outer leaflet mixing accompanied by (2) transient pore formation, both occurring on a time scale of approximately 10 s and leading to an initial, reversible intermediate; (3) a 1-3 min delay leading to formation of a fusion-committed second intermediate; (4) inner leaflet mixing on a time scale of ca. 150 s; and (5) contents mixing on a time scale of 150-300 s. Inner leaflet mixing, which has never before been shown to be distinct from outer leaflet mixing, begins simultaneously with, but is completed before, contents mixing. Fusion products, which seem to be large vesicles, are estimated to be formed from four to six SUVs. The fusion intermediates are shown to have merged outer leaflets and distinct inner leaflets prior to formation of fusion pores. Using quasi-elastic light scattering, the initial intermediate was shown to revert to SUVs upon removal of PEG, while the second intermediate irreversibly continued to a fusion pore in the presence or absence of PEG. The sequence of events for this pure lipid bilayer fusion process shows remarkable homology to what is known about the sequence of protein-mediated cell membrane fusion events, suggesting a commonality between these two processes.
Collapse
Affiliation(s)
- J Lee
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill 27599-7260, USA
| | | |
Collapse
|
11
|
Rooney IA, Heuser JE, Atkinson JP. GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells. J Clin Invest 1996; 97:1675-86. [PMID: 8601633 PMCID: PMC507232 DOI: 10.1172/jci118594] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications.
Collapse
Affiliation(s)
- I A Rooney
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, UK
| | | | | |
Collapse
|
12
|
Niles WD, Silvius JR, Cohen FS. Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membrane--membrane adhesion. J Gen Physiol 1996; 107:329-51. [PMID: 8868046 PMCID: PMC2217000 DOI: 10.1085/jgp.107.3.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin-phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of closest membrane apposition.
Collapse
Affiliation(s)
- W D Niles
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
13
|
Chernomordik L, Chanturiya A, Green J, Zimmerberg J. The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J 1995; 69:922-9. [PMID: 8519992 PMCID: PMC1236321 DOI: 10.1016/s0006-3495(95)79966-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To fuse, membranes must bend. The energy of each lipid monolayer with respect to bending is minimized at the spontaneous curvature of the monolayer. Two lipids known to promote opposite spontaneous curvatures, lysophosphatidylcholine and arachidonic acid, were added to different sides of planar phospholipid membranes. Lysophosphatidylcholine added to the contacting monolayers of fusing membranes inhibited the hemifusion we observed between lipid vesicles and planar membranes. In contrast, fusion pore formation depended upon the distal monolayer of the planar membrane; lysophosphatidylcholine promoted and arachidonic acid inhibited. Thus, the intermediates of hemifusion and fusion pores in phospholipid membranes involve different membrane monolayers and may have opposite net curvatures, Biological fusion may proceed through similar intermediates.
Collapse
Affiliation(s)
- L Chernomordik
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
14
|
Chernomordik LV. Fusion of semispherical membranes. Methods Enzymol 1993; 220:100-11. [PMID: 8350748 DOI: 10.1016/0076-6879(93)20077-g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- L V Chernomordik
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
15
|
Cohen FS, Niles WD. Reconstituting channels into planar membranes: a conceptual framework and methods for fusing vesicles to planar bilayer phospholipid membranes. Methods Enzymol 1993; 220:50-68. [PMID: 7688845 DOI: 10.1016/0076-6879(93)20073-c] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protocols to reconstitute channels into planar bilayers via fusion methods have now been developed. The greater the intravesicular pressures generated, the greater is the fusion. These pressures can be calculated exactly for any experimental configuration. For some of the configurations, adding nystatin channels to the vesicle membrane will greatly aid fusion. The configurations of the 1990 Method (Figs. 4 and 5) are optimal for fusing vesicles that are reconstituted with ion-selective channels to planar membranes. Greater binding, and ultimately greater fusion, is achieved by ejecting vesicles directly at the membrane rather than by simply adding material to the cis compartment.
Collapse
Affiliation(s)
- F S Cohen
- Department of Physiology, Rush Medical College, Chicago, Illinois 61612
| | | |
Collapse
|
16
|
Niles WD, Li Q, Cohen FS. Computer detection of the rapid diffusion of fluorescent membrane fusion markers in images observed with video microscopy. Biophys J 1992; 63:710-22. [PMID: 1420909 PMCID: PMC1262204 DOI: 10.1016/s0006-3495(92)81641-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have developed an algorithm for automated detection of the dynamic pattern characterizing flashes of fluorescence in video images of membrane fusion. The algorithm detects the spatially localized, transient increases and decreases in brightness that result from the dequenching of fluorescent dye in phospholipid vesicles or lipid-enveloped virions fusing with a planar membrane. The flash is identified in video images by its nonzero time derivative and the symmetry of its spatial profile. Differentiation is implemented by forward and backward subtractions of video frames. The algorithm groups spatially connected pixels brighter than a user-specified threshold into distinct objects in forward- and backward-differentiated images. Objects are classified as either flashes or noise particles by comparing the symmetries of matched forward and backward difference profiles and then by tracking each profile in successive difference images. The number of flashes identified depends on the brightness threshold, the size of the convolution kernel used to filter the image, and the time difference between the subtracted video frames. When these parameters are changed so that the algorithm identifies an increasing percentage of the flashes recognized by eye, an increasing number of noise objects are mistakenly identified as flashes. These mistaken flashes can be eliminated by a human observer. The algorithm considerably shortens the time needed to analyze video data. Tested extensively with phospholipid vesicle and virion fusion with planar membranes, our implementation of the algorithm accurately determined the rate of fusion of influenza virions labeled with the lipophilic dye octadecylrhodamine (R18).
Collapse
Affiliation(s)
- W D Niles
- Department of Physiology, Rush University, Chicago, Illinois 60612
| | | | | |
Collapse
|
17
|
Affiliation(s)
- W D Niles
- Department of Physiology, Rush Medical College, Chicago, Illinois 60612
| | | |
Collapse
|