1
|
Soni A, Brightwell G. Effect of novel and conventional food processing technologies on Bacillus cereus spores. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:265-287. [PMID: 38461001 DOI: 10.1016/bs.afnr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Palmerston North, New Zealand
| |
Collapse
|
2
|
Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biol Reprod 2022; 106:274-290. [PMID: 35136962 DOI: 10.1093/biolre/ioac009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Oocyte quality is perhaps the most important limiting factor in female fertility; however, the current methods of determining oocyte competence are only marginally capable of predicting a successful pregnancy. We aim to review the predictive value of non-invasive techniques for the assessment of human oocytes and their related cells and biofluids that pertain to their developmental competence. Investigation of the proteome, transcriptome, and hormonal makeup of follicular fluid, as well as cumulus-oocyte complexes are currently underway; however, prospective randomized non-selection-controlled trials of the future are needed before determining their prognostic value. The biological significance of polar body morphology and genetics are still unknown and the subject of debate. The predictive utility of zygotic viscoelasticity for embryo development has been demonstrated, but similar studies performed on oocytes have yet to be conducted. Metabolic profiling of culture media using human oocytes are also limited and may require integration of automated, high-throughput targeted metabolomic assessments in real time with microfluidic platforms. Light exposure to oocytes can be detrimental to subsequent development and utilization of time-lapse imaging and morphometrics of oocytes is wanting. Polarized light, Raman microspectroscopy, and coherent anti-Stokes Raman scattering are a few novel imaging tools that may play a more important role in future oocyte assessment. Ultimately, the integration of chemistry, genomics, microfluidics, microscopy, physics, and other biomedical engineering technologies into the basic studies of oocyte biology, and in testing and perfecting practical solutions of oocyte evaluation, are the future for non-invasive assessment of oocytes.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Daniel Miranian
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Physiology, Urology, and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophys J 2021; 120:4722-4737. [PMID: 34592261 DOI: 10.1016/j.bpj.2021.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we propose a generalized Langevin equation-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (noninstantaneous) component modeled through a Dirac δ function and a three-parameter Mittag-Leffler type function, respectively. By imposing a specific relationship between the parameters of the three-parameter Mittag-Leffler function, the different dynamical regimes-namely ballistic, subdiffusive, and Brownian, as well as the crossover from one regime to another-are retrieved. Within this approach, the transition time from the ballistic to the subdiffusive regime and the spectrum of relaxation times underlying the transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the mean-square displacement derived in the framework of this model and the mean-square displacement of a protein diffusing in a membrane calculated through molecular dynamics simulations.
Collapse
|
4
|
Zhang R, Gu X, Xu G, Fu X. Improving the lipid extraction yield from Chlorella based on the controllable electroporation of cell membrane by pulsed electric field. BIORESOURCE TECHNOLOGY 2021; 330:124933. [PMID: 33721737 DOI: 10.1016/j.biortech.2021.124933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In order to solve the increasingly serious problems of energy and environment, microalgae are used as a raw material for extracting lipids to produce biodiesel. Prior to the extraction of lipids, microalgae were treated with high-voltage pulsed electric field (PEF) to break the cell membrane. It was found that the lipid extraction yield depends on the electric field strength (E) and the specific energy input (Wsp), and has a certain relationship with the cell disintegration rate of Chlorella. The perforation degree of the Chlorella's cell membrane by PEF treatment is controllable, moderate perforation can be ensured by controlling the power parameters. PEF treatment significantly improved the extraction yield of lipids. Compared with the test samples without PEF treatment, PEF treatment increased the lipid extraction yields by up to 166.67%. However, an excessively high voltage will cause the quality of the extracted biodiesel to decrease.
Collapse
Affiliation(s)
- Ruobing Zhang
- Laboratory of Advanced Technology of Power & Electrical Engineering, Tsinghua Shenzhen International Graduate School(SIGS), Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Xinyu Gu
- Laboratory of Advanced Technology of Power & Electrical Engineering, Tsinghua Shenzhen International Graduate School(SIGS), Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Guowang Xu
- Laboratory of Advanced Technology of Power & Electrical Engineering, Tsinghua Shenzhen International Graduate School(SIGS), Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Xian Fu
- Laboratory of Advanced Technology of Power & Electrical Engineering, Tsinghua Shenzhen International Graduate School(SIGS), Tsinghua University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
5
|
Water Pores in Planar Lipid Bilayers at Fast and Slow Rise of Transmembrane Voltage. MEMBRANES 2021; 11:membranes11040263. [PMID: 33916447 PMCID: PMC8067013 DOI: 10.3390/membranes11040263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Basic understanding of the barrier properties of biological membranes can be obtained by studying model systems, such as planar lipid bilayers. Here, we study water pores in planar lipid bilayers in the presence of transmembrane voltage. Planar lipid bilayers were exposed to fast and slow linearly increasing voltage and current signals. We measured the capacitance, breakdown voltage, and rupture time of planar lipid bilayers composed of 1-pamitoyl 2-oleoyl phosphatidylcholine (POPC), 1-pamitoyl 2-oleoyl phosphatidylserine (POPS), and a mixture of both lipids in a 1:1 ratio. Based on the measurements, we evaluated the change in the capacitance of the planar lipid bilayer corresponding to water pores, the radius of water pores at membrane rupture, and the fraction of the area of the planar lipid bilayer occupied by water pores.planar lipid bilayer capacitance, which corresponds to water pores, water pore radius at the membrane rupture, and a fraction of the planar lipid bilayer area occupied by water pores. The estimated pore radii determining the rupture of the planar lipid bilayer upon fast build-up of transmembrane voltage are 0.101 nm, 0.110 nm, and 0.106 nm for membranes composed of POPC, POPS, and POPC:POPS, respectively. The fraction of the surface occupied by water pores at the moment of rupture of the planar lipid bilayer The fraction of an area that is occupied by water pores at the moment of planar lipid bilayer rupture is in the range of 0.1–1.8%.
Collapse
|
6
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
7
|
Cho ER, Kim SS, Kang DH. Inactivation Kinetics and Membrane Potential of Pathogens in Soybean Curd Subjected to Pulsed Ohmic Heating Depending on Applied Voltage and Duty Ratio. Appl Environ Microbiol 2020; 86:e00656-20. [PMID: 32385086 PMCID: PMC7357481 DOI: 10.1128/aem.00656-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this research was to investigate the efficacy of the duty ratio and applied voltage in the inactivation of pathogens in soybean curd by pulsed ohmic heating (POH). The heating rate of soybean curd increased rapidly as the applied voltage increased, although the duty ratio did not affect the temperature profile. We supported this result by verifying that electrical conductivity increased with the applied voltage. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in soybean curd were significantly (P < 0.05) inactivated by more than 1 log unit at 80 Vrms (root mean square voltage). To elucidate the mechanism underlying these results, the membrane potential of the pathogens was examined using DiBAC4(3) [bis-(1,3-dibutylbarbituric acid)trimethine oxonol] on the basis of a previous study showing that the electric field generated by ohmic heating affected the membrane potential of cells. The values of DiBAC4(3) accumulation increased under increasing applied voltage, and they were significantly (P < 0.05) higher at 80 Vrms, while the duty ratio had no effect. In addition, morphological analysis via transmission electron microscopy showed that electroporation and expulsion of intracellular materials were predominant at 80 Vrms Moreover, electrode corrosion was overcome by the POH technique, and the textural and color properties of soybean curd were preserved. These results substantiate the idea that the applied voltage has a profound effect on the microbial inactivation of POH as a consequence of not only the thermal effect, but also the nonthermal effect, of the electric field, whereas the duty ratio does not have such an effect.IMPORTANCE High-water-activity food products, such as soybean curd, are vulnerable to microbial contamination, which causes fatal foodborne diseases and food spoilage. Inactivating microorganisms inside food is difficult because the transfer of thermal energy is slower inside than it is outside the food. POH is an adequate sterilization technique because of its rapid and uniform heating without causing electrode corrosion. To elucidate the electrical factors associated with POH performance in the inactivation of pathogens, the effects of the applied voltage and duty ratio on POH were investigated. In this study, we verified that a high applied voltage (80 Vrms) at a duty ratio of 0.1 caused thermal and nonthermal effects on pathogens that led to an approximately 4-log-unit reduction in a significantly short time. Therefore, the results of this research corroborate database predictions of the inactivation efficiency of POH based on pathogen control strategy modeling.
Collapse
Affiliation(s)
- Eun-Rae Cho
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Soni A, Oey I, Silcock P, Ross IK, Bremer PJ. Effect of pulsed electric field with moderate heat (80°C) on inactivation, thermal resistance and differential gene expression in B. cereusspores. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aswathi Soni
- Department of Food Science University of Otago Dunedin New Zealand
- AgResearch Palmerston North New Zealand
| | - Indrawati Oey
- Department of Food Science University of Otago Dunedin New Zealand
- Riddet Institute Palmerston North New Zealand
| | - Patrick Silcock
- Department of Food Science University of Otago Dunedin New Zealand
| | - Ian K. Ross
- Department of Food Science University of Otago Dunedin New Zealand
| | - Phil J. Bremer
- Department of Food Science University of Otago Dunedin New Zealand
- New Zealand Food Safety Science Research Centre Palmerston North New Zealand
| |
Collapse
|
9
|
Zheng T, Baaken G, Behrends JC, Rühe J. Microelectrochemical cell arrays for whole-cell currents recording through ion channel proteins based on trans-electroporation approach. Analyst 2019; 145:197-205. [PMID: 31730143 DOI: 10.1039/c9an01737b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High electrostability and long life-time of planar chip technology are crucial for electrophysiological measurements such as ionic current recording through ion channel proteins embedded in biological cell membrane. In this paper, we propose a novel planar microchip integrated with microelectrochemical cell array toward to a feasible solution for ion channel screening with high resolution and long life-time. In order to reduce the interference from the leakage currents, a synthetic lipid bilayer is applied to form a high sealing resistance. The whole-cell electrical access can be constructed via electroporating the lipid bilayer in close proximity to the cell membrane. Parameters of electroporation including amplitude and time scale are firstly optimized by using parallel electroporation to the lipid bilayers. In this approach, individual cells can be trapped to the target positions by applying dielectrophoresis (DEP) manipulation. Poly(ethylene glycol) (PEG) is employed with low concentration to facilitate the closed contact between the cells and the lipid bilayer to increase the efficiency of the whole-cell mode construction. Through this chip based method, stable current recordings through inward rectifier potassium (Kir) ion channels embedded in rat basophilic leukemia (RBL-1) cell membrane are achieved with high electrical sealing resistance (over 1 GΩ). In addition, without need for complex fluidic connections, this method allows for an easy operation and further miniaturization of the measuring system.
Collapse
Affiliation(s)
- Tianyang Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | | | | | | |
Collapse
|
10
|
Hu H, Zhang L, Lu L, Huang F, Chen W, Zhang C, Zhang H, Goto K. Effects of the combination of moderate electric field and high‐oxygen modified atmosphere packaging on pork meat quality during chill storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Honghai Hu
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
- Academy of Food and Nutrition Health Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Hefei China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin China
| | - Liang Zhang
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
- Academy of Food and Nutrition Health Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Hefei China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin China
| | - Lili Lu
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
| | - Feng Huang
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
- Academy of Food and Nutrition Health Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Hefei China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin China
| | - Wenbo Chen
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
| | - Chunjiang Zhang
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
- Academy of Food and Nutrition Health Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Hefei China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin China
| | - Hong Zhang
- Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Ministry of Agriculture Beijing China
- Academy of Food and Nutrition Health Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Hefei China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin China
| | | |
Collapse
|
11
|
Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials 2019; 209:54-66. [DOI: 10.1016/j.biomaterials.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
|
12
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
13
|
Electroporation and its Relevance for Cardiac Catheter Ablation. JACC Clin Electrophysiol 2018; 4:977-986. [DOI: 10.1016/j.jacep.2018.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
|
14
|
Paniagua-Martínez I, Ramírez-Martínez A, Serment-Moreno V, Rodrigues S, Ozuna C. Non-thermal Technologies as Alternative Methods for Saccharomyces cerevisiae Inactivation in Liquid Media: a Review. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2066-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Salimi E, Braasch K, Butler M, Thomson DJ, Bridges GE. Dielectrophoresis study of temporal change in internal conductivity of single CHO cells after electroporation by pulsed electric fields. BIOMICROFLUIDICS 2017; 11:014111. [PMID: 28289483 PMCID: PMC5315669 DOI: 10.1063/1.4975978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Applying sufficiently strong pulsed electric fields to a cell can permeabilize the membrane and subsequently affect its dielectric properties. In this study, we employ a microfluidic dielectrophoresis cytometry technique to simultaneously electroporate and measure the time-dependent dielectric response of single Chinese hamster ovary cells. Using experimental measurements along with numerical simulations, we present quantitative results for the changes in the cytoplasm conductivity of single cells within seconds after exposure to 100 μs duration pulsed electric fields with various intensities. It is shown that, for electroporation in a medium with conductivity lower than that of the cell's cytoplasm, the internal conductivity of the cell decreases after the electroporation on a time scale of seconds and stronger pulses cause a larger and more rapid decrease. We also observe that, after the electroporation, the cell's internal conductivity is constrained to a threshold. This implies that the cell prevents some of the ions in its cytoplasm from diffusing through the created pores to the external medium. The temporal change in the dielectric response of each individual cell is continuously monitored over minutes after exposure to pulsed electric fields. A time constant associated with the cell's internal conductivity change is observed, which ranges from seconds to tens of seconds depending on the applied pulse intensity. This experimental observation supports the results of numerical models reported in the literature.
Collapse
Affiliation(s)
- E Salimi
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T 5V6, Canada
| | - K Braasch
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - M Butler
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - D J Thomson
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T 5V6, Canada
| | - G E Bridges
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T 5V6, Canada
| |
Collapse
|
16
|
Ou QX, Nikolic-Jaric M, Gänzle M. Mechanisms of inactivation of Candida humilis and Saccharomyces cerevisiae by pulsed electric fields. Bioelectrochemistry 2016; 115:47-55. [PMID: 28063751 DOI: 10.1016/j.bioelechem.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
AIMS This study aimed to determine how electric field strength, pulse width and shape, and specific energy input relate to the effect of pulsed electric fields (PEF) on viability and membrane permeabilization in Candida humilis and Saccharomyces cerevisiae suspended in potassium phosphate buffer. METHODS AND RESULTS Cells were treated with a micro-scale system with parallel plate electrodes. Propidium iodide was added before or after treatments to differentiate between reversible and irreversible membrane permeabilization. Treatments of C. humilis with 71kV/cm and 48kJ/kg reduced cell counts by 3.9±0.6 log (cfu/mL). Pulse shape or width had only a small influence on the treatment lethality. Variation of electric field strength (17-71kV/cm), pulse width (0.086-4μs), and specific energy input (8-46kJ/kg) demonstrated that specific energy input correlated to the membrane permeabilization (r2=0.84), while other parameters were uncorrelated. A minimum energy input of 3 and 12kJ/kg was required to achieve reversible membrane permeabilization and a reduction of cell counts, respectively, of C. humilis. CONCLUSIONS Energy input was the parameter that best described the inactivation efficiency of PEF. SIGNIFICANCE AND IMPACT OF STUDY This study is an important step to identify key process parameters and to facilitate process design for improved cost-effectiveness of commercial PEF treatment.
Collapse
Affiliation(s)
- Qi-Xing Ou
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | | | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, School of Food and Pharmaceutical Engineering, Wuhan, China.
| |
Collapse
|
17
|
Barbosa-Cánovas G, Góngora-Nieto M, Swanson B. Nonthermal electrical methods in food preservation/Métodos eléctricos no térmicos para la conservación de alimentos. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/108201329800400508] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonthermal methods to preserve foods, such as pulsed electric fields, light pulses, and oscillating magnetic fields, are gaining attention within the food industry and research laboratories. They offer sound alternatives to conventional thermal processes where quality aspects and costs are becoming a concern.
Collapse
Affiliation(s)
- G.V. Barbosa-Cánovas
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
| | - M.M. Góngora-Nieto
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
| | - B.G. Swanson
- Department of Food Science and Human Nutrition, Washington State University, Pullman, WA 99164-6376, USA
| |
Collapse
|
18
|
Pothakamury U, Barbosa-Cánovas G, Swanson B, Spence K. Ultrastructural changes in Staphylococcus aureus treated with pulsed electric fields / Cambios ultraestructurales en Staphylococcus aureus sometida a campos eléctricos pulsantes. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/108201329700300206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early stationary phase cells of Staphylococcus aureus were inoculated into a model food, simulated milk ultrafiltrate (SMUF) and subjected to 16, 32, and 64 pulses at electric field intensities of 20, 40 and 60 kV/cm at 13 °C. In addition temperatures of 20, 25 and 30 °C were also tested with 32 pulses and an electric field of 60 kV/cm. The temperature of the SMUF increased by 1-2 ° C at the end of the 64 pulses. Cells subjected to 64 pulses at 20, 40 and 60 kV/cm were observed for ultrastructural changes using scanning and transmission electron microscopy techniques. The cell surface was rough after treatment with electric field when observed by scanning electron microscopy (SEM). The cell wall was broken, and the cytoplasmic contents were leaking out of the cell after exposure to 64 pulses at 60 kV/cm when observed by transmission electron microscopy (TEM). The breaking of the cell wall is an indication of electro-mechanical breakdown of the cell. The increase in inactivation with an increase in the electric field strength can be related to the increase in the damage to the cells. Cells subjected to 32 pulses at 60 kV/cm and 13, 20 or 25 °C were compared microscopically with the untreated control cells. Cells subjected to heat treat ment (10 min, at 66 °C) were compared with electric field-treated and untreated control cells. Although important changes were observed in the protoplast, no cell wall breakdown was observed in heat-treated cells when compared to the electric field-treated cells. This result indi cates a different mechanism of inactivation of cells with heat treatment.
Collapse
Affiliation(s)
| | | | | | - K.D. Spence
- Department of Microbiology, Washington State University Pullman WA 99164-6120, USA
| |
Collapse
|
19
|
Jaeger H, Roth A, Toepfl S, Holzhauser T, Engel KH, Knorr D, Vogel RF, Bandick N, Kulling S, Heinz V, Steinberg P. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Gurbanov ED. High voltage electric pulse treatment of water-containing foodstuffs. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2016. [DOI: 10.3103/s106837551603008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Yogesh K. Pulsed electric field processing of egg products: a review. Journal of Food Science and Technology 2015; 53:934-45. [PMID: 27162373 DOI: 10.1007/s13197-015-2061-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/07/2015] [Accepted: 10/07/2015] [Indexed: 01/20/2023]
Abstract
Thermal processing ensures safety and enhances the shelf-life of most of the food products. It alters the structural-chemical composition, modifies heat labile components, as well as affects the functional properties of food products. This has driven the development of non-thermal food processing techniques, primarily for extending the shelf-life of different food products. These techniques are currently also being evaluated for their effects on product processing, quality and other safety parameters. Pulsed electric field (PEF) is an example of non-thermal technique which can be applied for a variety of purpose in the food processing industry. PEF can be used for antimicrobial treatment of various food products to improve the storability or food safety, for extraction and recovery of some high-value compounds from a food matrix or for stabilization of various food products through inactivation of some enzymes or catalysts. Research on the application of PEF to control spoilage or pathogenic microorganisms in different egg products is being currently focused. It has been reported that PEF effectively reduces the activity of various microorganisms in a variety of egg products. However, the PEF treatment also alters the structural and functional properties to some extent and there is a high degree of variability between different studies. In addition to integrating findings, the present review also provides several explanations for the inconsistency in findings between different studies related to PEF processing of egg products. Several specific recommendations for future research directions on PEF processing are well discussed in this review.
Collapse
Affiliation(s)
- K Yogesh
- Livestock Products Technology, Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141 004 India
| |
Collapse
|
22
|
Liu ZW, Zeng XA, Sun DW, Han Z, Aadil RM. Synergistic effect of thermal and pulsed electric field (PEF) treatment on the permeability of soya PC and DPPC vesicles. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2014.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
|
24
|
Qiu X, Lee YT, Yung PT. A bacterial spore model of pulsed electric fields on spore morphology change revealed by simulation and SEM. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6822-5. [PMID: 25571563 DOI: 10.1109/embc.2014.6945195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A two-layered spore model was proposed to analyze morphological change of bacterial spores subjected under pulsed electric fields. The outer layer, i.e. spore coat, was defined by Mooney-Rivlin hyper-elastic material model. The inner layer, i.e. peptidoglycan and spore core, was modeled by applying additional adhesion forces. The effect of pulsed electric fields on surface displacement was simulated in COMSOL Multiphysics and verified by SEM. The electro-mechanical theory, considering spore coat as a capacitor, was used to explain concavity; and the thin viscoelastic film theory, considering membrane bilayer as fluctuating surfaces, was used to explain leakage forming. Mutual interaction of external electric fields, charged spores, adhesion forces and ions movement were all predicted to contribute to concavity and leakage.
Collapse
|
25
|
Winterhalter M. Lipid membranes in external electric fields: kinetics of large pore formation causing rupture. Adv Colloid Interface Sci 2014; 208:121-8. [PMID: 24485595 DOI: 10.1016/j.cis.2014.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
About 40 years ago, Helfrich introduced an elastic model to explain shapes and shape transitions of cells (Z Naturforsch C, 1973; 28:693). This seminal article stimulated numerous theoretical as well as experimental investigations and created new research fields. In particular, the predictive power of his approach was demonstrated in a large variety of lipid model system. Here in this review, we focus on the development with respect to planar lipid membranes in external electric fields. Stimulated by the early work of Helfrich on electric field forces acting on liposomes, we extended his early approach to understand the kinetics of lipid membrane rupture. First, we revisit the main forces determining the kinetics of membrane rupture followed by an overview on various experiments. Knowledge on the kinetics of defect formation may help to design stable membranes or serve for novel mechanism for controlled release.
Collapse
|
26
|
Zakhvataev VE, Khlebopros RG. The Kupershtokh-Medvedev electrostrictive instability as possible mechanism of initiation of phase transitions, domains and pores in lipid membranes and influence of microwave irradiation on cell. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912010198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
27
|
Microscopic visualization of Pulsed Electric Field induced changes on plant cellular level. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2010.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Shelf life and sensory attributes of a fruit smoothie-type beverage processed with moderate heat and pulsed electric fields. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2010.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
ZHANG YI, GAO BEI, ZHANG MINGWEI, SHI JOHN, XU YUJUAN. PULSED ELECTRIC FIELD PROCESSING EFFECTS ON PHYSICOCHEMICAL PROPERTIES, FLAVOR COMPOUNDS AND MICROORGANISMS OF LONGAN JUICE. J FOOD PROCESS PRES 2010. [DOI: 10.1111/j.1745-4549.2009.00441.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. FOOD ENGINEERING REVIEWS 2010. [DOI: 10.1007/s12393-010-9023-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Hsieh CW, Lai CH, Ho WJ, Huang SC, Ko WC. Effect of Thawing and Cold Storage on Frozen Chicken Thigh Meat Quality by High-Voltage Electrostatic Field. J Food Sci 2010; 75:M193-7. [DOI: 10.1111/j.1750-3841.2010.01594.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Vlahovska PM. Nonequilibrium Dynamics of Lipid Membranes: Deformation and Stability in Electric Fields. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-381266-7.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
33
|
Kramar P, Miklavčič D, Kotulska M, Lebar AM. Voltage- and Current-Clamp Methods for Determination of Planar Lipid Bilayer Properties. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1554-4516(10)11002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
34
|
Abstract
Ohmic heating has been revived in the 1980s and after a brief pause in the 1990s, has reemerged in a number of food processing applications. An offshoot, Moderate Electric Field (MEF) processing has emerged from the recognition that even relatively mild electric fields themselves have significant effects on food and other biological materials. A number of significant research areas have been identified in this connection. In addition, a discussion is provided on priorities for federal research funding, including the need for basic research balanced with industry relevance, availability of pilot facilities for development of new technologies, and potentially, a mechanism for helping inventions survive through the initial ``Valley of Death'' phase.
Collapse
Affiliation(s)
- S. Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus OH 43210, USA,
| |
Collapse
|
35
|
Pavlin M, Kotnik T, Miklavčič D, Kramar P, Maček Lebar A. Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1554-4516(07)06007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
36
|
|
37
|
Abstract
Electroporation, the transient increase in the permeability of cell membranes when exposed to a high electric field, is an established in vitro technique and is used to introduce DNA or other molecules into cells. When the trans-membrane voltage induced by an external electric field exceeds a certain threshold (normally 0.2-1 V), a rearrangement of the molecular structure of the membrane occurs, leading to pore formation in the membrane and a considerable increase in the cell membrane permeability to ions, molecules and even macromolecules. This phenomenon is, potentially, the basis for many in vivo applications such as electrochemotherapy and gene therapy, but still lacks a comprehensive theoretical basis. This article reviews the state of current electroporation theories and briefly considers current and potential applications in biology and medicine.
Collapse
Affiliation(s)
- C Chen
- Department of Electronics, University of York, Heslington, YO10 5DD York, UK
| | | | | | | |
Collapse
|
38
|
Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 2006. [DOI: 10.1007/bfb0034499] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Teissie J, Golzio M, Rols MP. Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta Gen Subj 2005; 1724:270-80. [PMID: 15951114 DOI: 10.1016/j.bbagen.2005.05.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
Cell electropulsation is routinely used in cell Biology for protein, RNA or DNA transfer. Its clinical applications are under development for targeted drug delivery and gene therapy. Nevertheless, the molecular mechanisms supporting the induction of permeabilizing defects in the membrane assemblies remain poorly understood. This minireview describes the present state of the investigations concerning the different steps in the reversible electropermeabilization process. The different hypotheses, which were proposed to give a molecular description of the membrane events, are critically discussed. Other possibilities are then given. The need for more basic research on the associated loss of cohesion of the membrane appears as a conclusion.
Collapse
Affiliation(s)
- J Teissie
- IPBS UMR 5089 CNRS, 205 route de Narbonne, 31077 Toulouse, France.
| | | | | |
Collapse
|
40
|
Tarek M. Membrane electroporation: a molecular dynamics simulation. Biophys J 2005; 88:4045-53. [PMID: 15764667 PMCID: PMC1305635 DOI: 10.1529/biophysj.104.050617] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 03/08/2005] [Indexed: 11/18/2022] Open
Abstract
We present results of molecular dynamics simulations of lipid bilayers under a high transverse electrical field aimed at investigating their electroporation. Several systems are studied, namely 1), a bare bilayer, 2), a bilayer containing a peptide nanotube channel, and 3), a system with a peripheral DNA double strand. In all systems, the applied transmembrane electric fields (0.5 V.nm(-1) and 1.0 V.nm(-1)) induce an electroporation of the lipid bilayer manifested by the formation of water wires and water channels across the membrane. The internal structures of the peptide nanotube assembly and that of the DNA strand are hardly modified under field. For system 2, no perturbation of the membrane is witnessed at the vicinity of the channel, which indicates that the interactions of the peptide with the nearby lipids stabilize the bilayer. For system 3, the DNA strand migrates to the interior of the membrane only after electroporation. Interestingly enough, switching of the external transmembrane potential in cases 1 and 2 for few nanoseconds is enough to allow for complete resealing and reconstitution of the bilayer. We provide evidence that the electric field induces a significant lateral stress on the bilayer, manifested by surface tensions of magnitudes in the order of 1 mN.m(-1). This study is believed to capture the essence of several dynamical phenomena observed experimentally and provides a framework for further developments and for new applications.
Collapse
Affiliation(s)
- Mounir Tarek
- Equipe de dynamique des assemblages membranaires, Unité Mixte de Recherche, Centre National de la Recherche Scientifique/Université-Henri Poincaré 7565, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
41
|
Barbosa-Canovas G, Sepúlveda D. Present Status and the Future of PEF Technology. NOVEL FOOD PROCESSING TECHNOLOGIES 2004. [DOI: 10.1201/9780203997277.ch1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Shivashankara KS, Isobe S, Al-Haq MI, Takenaka M, Shiina T. Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of Irwin mango fruits stored at low temperature after high electric field pretreatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:1281-1286. [PMID: 14995134 DOI: 10.1021/jf030243l] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Greenhouse-grown tree ripe (TR) and mature green (MG) mangoes (cv. Irwin) were exposed to high electric field treatment before 20 and 30 days of storage at 5 degrees C. MG fruits were allowed to ripen at room temperature after low-temperature storage. Fruit physical quality attributes, ascorbic acid, carotene, quercetin, total phenols, and antioxidant capacity were estimated before and after the storage period. Antioxidant capacity of fruit juice was estimated using the ferric reducing antioxidant power (FRAP) assay. Fruit firmness decreased significantly during storage. Titratable acidity decreased 20 days after storage. Total soluble solids did not change during storage. Antioxidant capacity of fruits remained unchanged up to 20 days of storage period and decreased thereafter. Total phenol and carotenes increased during storage. Antioxidant capacity of fruits was significantly correlated only to ascorbic acids. Peel color and carotenes were higher in TR fruits, whereas titratable acidity and firmness were higher in MG fruits. There was no significant difference in other parameters between the stages of picking. Electric field pretreatment affected the respiration and antioxidant capacity of TR fruits and did not have any significant affect on other parameters. TR mangoes of cv. Irwin are more suitable for low-temperature storage and can be successfully stored for up to 20 days at 5 degrees C without any significant losses in functional properties and quality attributes.
Collapse
Affiliation(s)
- K S Shivashankara
- Division of Plant Physiology and Biochemistry, Indian Institute of Horticultural Research, Bangalore, India
| | | | | | | | | |
Collapse
|
43
|
Heinz V, Toepfl S, Knorr D. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. INNOV FOOD SCI EMERG 2003. [DOI: 10.1016/s1466-8564(03)00017-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Yeom HW, McCann KT, Streaker CB, Zhang QH. Pulsed electric field processing of high acid liquid foods: a review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2002; 44:1-32. [PMID: 11885135 DOI: 10.1016/s1043-4526(02)44002-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Hye Won Yeom
- Department of Food Science and Technology, Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
| | | | | | | |
Collapse
|
45
|
Food Processing by Pulsed Electric Fields: Treatment Delivery, Inactivation Level, and Regulatory Aspects. Lebensm Wiss Technol 2002. [DOI: 10.1006/fstl.2001.0880] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Yeom H, Zhang Q, Chism G. Inactivation of Pectin Methyl Esterase in Orange Juice by Pulsed Electric Fields. J Food Sci 2002. [DOI: 10.1111/j.1365-2621.2002.tb09519.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Cserhalmi Z, Vidács I, Beczner J, Czukor B. Inactivation of Saccharomyces cerevisiae and Bacillus cereus by pulsed electric fields technology. INNOV FOOD SCI EMERG 2002. [DOI: 10.1016/s1466-8564(01)00052-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Yeom HW, Streaker CB, Zhang QH, Min DB. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:4597-4605. [PMID: 11052706 DOI: 10.1021/jf000306p] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Effects of pulsed electric fields (PEF) at 35 kV/cm for 59 micros on the quality of orange juice were investigated and compared with those of heat pasteurization at 94.6 degrees C for 30 s. The PEF treatment prevented the growth of microorganisms at 4, 22, and 37 degrees C for 112 days and inactivated 88% of pectin methyl esterase (PME) activity. The PEF-treated orange juice retained greater amounts of vitamin C and the five representative flavor compounds than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0.05). The PEF-treated orange juice had lower browning index, higher whiteness (L), and higher hue angle (theta) values than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0. 05). The PEF-treated orange juice had a smaller particle size than the heat-pasteurized orange juice (p < 0.05). degrees Brix and pH values were not significantly affected by processing methods (p > 0. 05).
Collapse
Affiliation(s)
- H W Yeom
- Department of Food Science and Technology, The Ohio State University, 2121 Fyffe Road, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
49
|
Effect of pH, ethanol addition and high hydrostatic pressure on the inactivation of Bacillus subtilis by pulsed electric fields. INNOV FOOD SCI EMERG 2000. [DOI: 10.1016/s1466-8564(00)00013-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Tung L, Troiano GC, Sharma V, Raphael RM, Stebe KJ. Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann N Y Acad Sci 1999; 888:249-65. [PMID: 10842637 DOI: 10.1111/j.1749-6632.1999.tb07960.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article reviews recent work from our laboratory that explores how chemical additives may alter the threshold of electroporation of synthetic lipid bilayers. The addition of the nonionic block copolymeric surfactant, poloxamer 188 (P188), at a concentration of 1 mM increased the electroporation thresholds of planar lipid bilayer membranes made of azolectin. For a 10-microsecond rectangular pulse, P188-treated membranes were found to have a statistically higher threshold voltage, longer latency time to rupture, and lower postpulse conductance. Addition of the nonionic surfactant, octaethyleneglycol-mono-n-dodecyl-ether (C12E8), decreased the electroporation threshold of bilayer membranes made of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) by 10-40% for 10-microsecond- to 10-s-duration pulses, in a concentration-dependent manner over concentrations ranging from 0.1 to 10 mM. Postpulse membrane conductance also increased. The opposite effects of the two surfactants on electroporation thresholds may result from their very different structures, which would encourage different modes of surfactant-lipid interactions. To examine protein-lipid interactions and their effects on the electroporation threshold, the effects of a channel-forming polypeptide, gramicidin D (gD), was studied on membrane conductance and electroporation threshold. Electroporation thresholds for 15-ms pulses were unaffected by addition of gramicidin to POPC at a peptide:lipid concentration estimated to be 1:10,000, but increased significantly at ratios of 1:500 and 1:15, while membrane conductance increased monotonically with peptide concentration. A micropipette aspiration technique was applied to giant unilamellar POPC vesicles to measure changes in the membrane physical properties. When gD was added to give an estimated peptide:lipid ratio of 1:15, the membrane area expansivity modulus increased, indicating that the increase in electroporation threshold is correlated with a change in membrane stiffness. Thus, these findings demonstrate that surfactants or peptides can mediate the electroporation threshold of lipid bilayers.
Collapse
Affiliation(s)
- L Tung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|