1
|
Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V. Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens 2020; 9:pathogens9070572. [PMID: 32679679 PMCID: PMC7400496 DOI: 10.3390/pathogens9070572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022] Open
Abstract
The Leishmania donovani species complex consists of all L. donovani and L. infantum strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in Leishmania spp. occur very often, thus enabling parasites to adapt to the different environmental conditions. Some of these rearrangements may be directly linked to the virulence or explain the reduced efficacy of antimonial drugs in some isolates. In the current study, we focused on a large-scale analysis of putative gene conversion events using publicly available datasets. Previous population study of L. donovani suggested that population variability of L. donovani is relatively low, however the authors used masking procedures and strict read selection criteria. We decided to re-analyze DNA-seq data without masking sequences, because we were interested in the most dynamic fraction of the genome. The majority of samples have an excess of putative gene conversion/recombination events in the noncoding regions, however we found an overall excess of putative intrachromosomal gene conversion/recombination in the protein coding genes, compared to putative interchromosomal gene conversion/recombination events.
Collapse
Affiliation(s)
- Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA;
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Ivan A. Sidorenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
2
|
Okagaki RJ, Dukowic-Schulze S, Eggleston WB, Muehlbauer GJ. A Critical Assessment of 60 Years of Maize Intragenic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:1560. [PMID: 30420864 PMCID: PMC6215864 DOI: 10.3389/fpls.2018.01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Until the mid-1950s, it was believed that genetic crossovers did not occur within genes. Crossovers occurred between genes, the "beads on a string" model. Then in 1956, Seymour Benzer published his classic paper describing crossing over within a gene, intragenic recombination. This result from a bacteriophage gene prompted Oliver Nelson to study intragenic recombination in the maize Waxy locus. His studies along with subsequent work by others working with maize and other organisms described the outcomes of intragenic recombination and provided some of the earliest evidence that genes, not intergenic regions, were recombination hotspots. High-throughput genotyping approaches have since replaced single gene intragenic studies for characterizing the outcomes of recombination. These large-scale studies confirm that genes, or more generally genic regions, are the most active recombinogenic regions, and suggested a pattern of crossovers similar to the budding yeast Saccharomyces cerevisiae. In S. cerevisiae recombination is initiated by double-strand breaks (DSBs) near transcription start sites (TSSs) of genes producing a polarity gradient where crossovers preferentially resolve at the 5' end of genes. Intragenic studies in maize yielded less evidence for either polarity or for DSBs near TSSs initiating recombination and in certain respects resembled Schizosaccharomyces pombe or mouse. These different perspectives highlight the need to draw upon the strengths of different approaches and caution against relying on a single model system or approach for understanding recombination.
Collapse
Affiliation(s)
- Ron J. Okagaki
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | | | - William B. Eggleston
- Department of Biology, Virginia Commonwealth University, St. Paul, MN, United States
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Zickler D, Espagne E. Sordaria, a model system to uncover links between meiotic pairing and recombination. Semin Cell Dev Biol 2016; 54:149-57. [PMID: 26877138 DOI: 10.1016/j.semcdb.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 11/20/2022]
Abstract
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Eric Espagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
4
|
Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 2016; 38:84-93. [PMID: 26686657 PMCID: PMC4740264 DOI: 10.1016/j.dnarep.2015.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/14/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
5
|
Sun Y, Ambrose JH, Haughey BS, Webster TD, Pierrie SN, Muñoz DF, Wellman EC, Cherian S, Lewis SM, Berchowitz LE, Copenhaver GP. Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002968. [PMID: 23055940 PMCID: PMC3464199 DOI: 10.1371/journal.pgen.1002968] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/08/2012] [Indexed: 11/18/2022] Open
Abstract
Gene conversion, the non-reciprocal exchange of genetic information, is one of the potential products of meiotic recombination. It can shape genome structure by acting on repetitive DNA elements, influence allele frequencies at the population level, and is known to be implicated in human disease. But gene conversion is hard to detect directly except in organisms, like fungi, that group their gametes following meiosis. We have developed a novel visual assay that enables us to detect gene conversion events directly in the gametes of the flowering plant Arabidopsis thaliana. Using this assay we measured gene conversion events across the genome of more than one million meioses and determined that the genome-wide average frequency is 3.5×10(-4) conversions per locus per meiosis. We also detected significant locus-to-locus variation in conversion frequency but no intra-locus variation. Significantly, we found one locus on the short arm of chromosome 4 that experienced 3-fold to 6-fold more gene conversions than the other loci tested. Finally, we demonstrated that we could modulate conversion frequency by varying experimental conditions.
Collapse
Affiliation(s)
- Yujin Sun
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan H. Ambrose
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brena S. Haughey
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tyler D. Webster
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah N. Pierrie
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniela F. Muñoz
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Emily C. Wellman
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shalom Cherian
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott M. Lewis
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Luke E. Berchowitz
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
The filamentous fungi Neurospora crassa and Sordaria macrospora are materials of choice for recombination studies because each of the DNA strands involved in meiosis can be visually analyzed using spore-color mutants. Well-advanced molecular genetic methodologies have been developed for each of these fungi, and several mutants defective in recombination and/or pairing are available. Moreover, the complete genome sequence of N. crassa has made it possible to clone virtually any gene involved in their life cycle. Both fungi provide also a particularly attractive experimental system for cytological analysis of meiosis: stages can be determined independently of chromosomal morphology and their seven chromosomes are easily identified. The techniques for light, immunofluorescence and electron microscopy presented here have been used, with success, for monitoring of chromosome behavior during both meiotic and sporulation processes. They have also proved useful for the analysis of mitochondria and peroxisomes as well as cytoskeleton and spindle pole-body components. Moreover, all techniques of this chapter can be easily applied to other filamentous ascomycetes, including other Sordaria and Neurospora species as well as Podospora, Ascobolus, Ascophanus, Fusarium, Neotiella, and Aspergillus species.
Collapse
|
7
|
Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells. PLoS Genet 2009; 5:e1000577. [PMID: 19629170 PMCID: PMC2708909 DOI: 10.1371/journal.pgen.1000577] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022] Open
Abstract
Most of the somatic cells of adult metazoans, including mammals, do not undergo continuous cycles of replication. Instead, they are quiescent and devote most of their metabolic activity to gene expression. The mutagenic consequences of exposure to DNA–damaging agents are well documented, but less is known about the impact of DNA lesions on transcription. To investigate this impact, we developed a luciferase-based expression system. This system consists of two types of construct composed of a DNA template containing an 8-oxoguanine, paired either with a thymine or a cytosine, placed at defined positions along the transcribed strand of the reporter gene. Analyses of luciferase gene expression from the two types of construct showed that efficient but error-prone transcriptional bypass of 8-oxoguanine occurred in vivo, and that this lesion was not repaired by the transcription-coupled repair machinery in mammalian cells. The analysis of luciferase activity expressed from 8OG:T-containing constructs indicated that the magnitude of erroneous transcription events involving 8-oxoguanine depended on the sequence contexts surrounding the lesion. Additionally, sequencing of the transcript population expressed from these constructs showed that RNA polymerase II mostly inserted an adenine opposite to 8-oxoguanine. Analysis of luciferase expression from 8OG:C-containing constructs showed that the generated aberrant mRNAs led to the production of mutant proteins with the potential to induce a long-term phenotypical change. These findings reveal that erroneous transcription over DNA lesions may induce phenotypical changes with the potential to alter the fate of non-replicating cells. The DNA molecule is used as a template for duplication, to transmit genetic information to the progeny of a given cell, but also as a template for the transcription machinery. This machinery converts genetic information from the DNA form to the RNA form used for protein synthesis. Chemical alterations of the DNA molecule caused by endogenous or environmental stresses are responsible for the generation of mutations. Indeed, these lesions can induce replication errors when DNA is duplicated during cell division. These mutations have been shown to be responsible for many genetic diseases and other sporadic diseases, such as cancer. However, less is known about their effects on transcription. We report here that a specific DNA lesion may lead to erroneous transcription events, ultimately leading to the production of aberrant proteins. The magnitude of these errors seems to depend largely on the DNA sequences surrounding the lesion and the capacity of the cell to repair this lesion. We also show that the production of aberrant protein from the erroneous transcription products may affect the phenotype of the cells concerned. Lesion-induced transcription errors may also play a role in the development of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Collapse
|
8
|
Takashima Y, Ikehata M, Miyakoshi J, Koana T. Inhibition of UV‐induced G1 arrest by exposure to 50 Hz magnetic fields in repair‐proficient and ‐deficient yeast strains. Int J Radiat Biol 2009; 79:919-24. [PMID: 14698960 DOI: 10.1080/09553000310001621437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess the possibility that extremely low frequency (ELF) magnetic fields obstruct the damage repair process, the gene conversion frequency and cell cycle kinetics in a DNA repair-proficient and nucleotide excision repair (NER)-deficient strain of diploid yeast Saccharomyces cerevisiae. MATERIALS AND METHODS DNA repair- or NER-deficient cells were irradiated with sublethal doses of ultraviolet light (UV) radiation followed by exposure to 50 Hz magnetic fields up to 30 mT for 48 h. After exposure, colony-forming ability was scored as revertants in which gene conversion had restored the functional allele of the ARG4 gene conversion hotspot. Cell cycle analysis was performed using flow cytometry. RESULTS Gene conversion rate was increased by the combined exposure in DNA repair-proficient cells, whereas it remained unchanged between UV alone and the combined exposure in NER-deficient cells. The UV-induced G1 arrest was inhibited by exposure to 30 mT ELF magnetic fields in both repair-proficient and -deficient cells. CONCLUSIONS The results suggest that exposure to high-density (30 mT) ELF magnetic fields decreases the efficiency of NER by suppressing G1 arrest, which in turn led to enhancement of the UV-induced gene conversion.
Collapse
Affiliation(s)
- Y Takashima
- Biotechnology Laboratory Railway Technical Research Institute, Hikaricho 2-8-38 Kokubunji, Tokyo 185-8540, Japan
| | | | | | | |
Collapse
|
9
|
Mell JC, Wienholz BL, Salem A, Burgess SM. Sites of recombination are local determinants of meiotic homolog pairing in Saccharomyces cerevisiae. Genetics 2008; 179:773-84. [PMID: 18505886 PMCID: PMC2429873 DOI: 10.1534/genetics.107.077727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 04/04/2008] [Indexed: 11/18/2022] Open
Abstract
Trans-acting factors involved in the early meiotic recombination pathway play a major role in promoting homolog pairing during meiosis in many plants, fungi, and mammals. Here we address whether or not allelic sites have higher levels of interaction when in cis to meiotic recombination events in the budding yeast Saccharomyces cerevisiae. We used Cre/loxP site-specific recombination to genetically measure the magnitude of physical interaction between loxP sites located at allelic positions on homologous chromosomes during meiosis. We observed nonrandom coincidence of Cre-mediated loxP recombination events and meiotic recombination events when the two occurred at linked positions. Further experiments showed that a subset of recombination events destined to become crossover products increased the frequency of nearby Cre-mediated loxP recombination. Our results support a simple physical model of homolog pairing in budding yeast, where recombination at numerous genomic positions generally serves to loosely coalign homologous chromosomes, while crossover-bound recombination intermediates locally stabilize interactions between allelic sites.
Collapse
Affiliation(s)
- Joshua Chang Mell
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 , USA
| | | | | | | |
Collapse
|
10
|
Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 2008; 29:517-24. [PMID: 18313389 PMCID: PMC2351957 DOI: 10.1016/j.molcel.2007.12.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 11/07/2007] [Accepted: 12/21/2007] [Indexed: 11/26/2022]
Abstract
During DNA double-strand-break (DSB) repair by recombination, the broken chromosome uses a homologous chromosome as a repair template. Early steps of recombination are well characterized: DSB ends assemble filaments of RecA-family proteins that catalyze homologous pairing and strand-invasion reactions. By contrast, the postinvasion steps of recombination are poorly characterized. Rad52 plays an essential role during early steps of recombination by mediating assembly of a RecA homolog, Rad51, into nucleoprotein filaments. The meiosis-specific RecA-homolog Dmc1 does not show this dependence, however. By exploiting the Rad52 independence of Dmc1, we reveal that Rad52 promotes postinvasion steps of both crossover and noncrossover pathways of meiotic recombination in Saccharomyces cerevisiae. This activity resides in the N-terminal region of Rad52, which can anneal complementary DNA strands, and is independent of its Rad51-assembly function. Our findings show that Rad52 functions in temporally and biochemically distinct reactions and suggest a general annealing mechanism for reuniting DSB ends during recombination.
Collapse
Affiliation(s)
- Jessica P. Lao
- Sections of Microbiology and Molecular & Cellular Biology, University of California Davis One Shields Ave., Davis, CA 95616, USA
| | - Steve D. Oh
- Sections of Microbiology and Molecular & Cellular Biology, University of California Davis One Shields Ave., Davis, CA 95616, USA
| | - Miki Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita 565-0871, Japan
| | - Akira Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita 565-0871, Japan
| | - Neil Hunter
- Sections of Microbiology and Molecular & Cellular Biology, University of California Davis One Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
11
|
Abstract
Meiotic recombination occurs preferentially at certain regions called hot spots and is important for generating genetic diversity and proper segregation of chromosomes during meiosis. Hot spots have been characterized most extensively in yeast, mice and humans. The development of methods based on sperm typing and population genetics has facilitated rapid and high-resolution mapping of hot spots in mice and humans in recent years. With increasing information becoming available on meiotic recombination in different species, it is now possible to compare several molecular features associated with hot-spot loci. Further, there have been advances in our knowledge of the factors influencing hot-spot activity and the role that they play in structuring the genome into haplotype blocks. We review the molecular features associated with hot spots in terms of their properties and mechanisms underlying their function and distribution. A large number of these features seem to be shared among hot spots from different species suggesting common mechanisms for their formation and function.
Collapse
Affiliation(s)
- K T Nishant
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
12
|
Neumann R, Jeffreys AJ. Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum Mol Genet 2006; 15:1401-11. [PMID: 16543360 DOI: 10.1093/hmg/ddl063] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic crossovers in the human genome cluster into highly localized hotspots identifiable indirectly from patterns of DNA diversity and directly by high-resolution sperm typing. Little is known about factors that control hotspot activity and the apparently rapid turnover of hotspots during recent evolution. Clues can, however, be gained by characterizing variation in sperm crossover activity between men. Previous studies have identified single nucleotide polymorphisms within hotspots that appear to suppress crossover activity and which may be involved in hotspot attenuation/extinction. We now analyse a closely spaced pair of hotspots (MSTM1a, MSTM1b) on chromosome 1q42.3, the former being a candidate for a young hotspot that has failed to leave a significant mark on haplotype diversity. Extensive surveys of different men revealed substantial polymorphism in sperm crossover frequencies at both hotspots, but with very different patterns of variation. Hotspot MSTM1b was active in all men tested but with widely differing crossover frequencies. In contrast, MSTM1a was active in only a few men and appeared to be recombinationally inert in the remainder, providing the first example of presence/absence polymorphism of a human hotspot. Haplotype analysis around both hotspots identified active and suppressed men sharing identical haplotypes, establishing that these major variations in the presence/absence of a hotspot and in quantitative activity are not caused by local DNA sequence variation. These findings suggest a role for distal regulators or epigenetic factors in hotspot activity and provide the first direct evidence for the rapid evolution of recombination hotspots in humans.
Collapse
Affiliation(s)
- Rita Neumann
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
13
|
Erdeniz N, Dudley S, Gealy R, Jinks-Robertson S, Liskay RM. Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication. Mol Cell Biol 2005; 25:9221-31. [PMID: 16227575 PMCID: PMC1265805 DOI: 10.1128/mcb.25.21.9221-9231.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Null mutations in DNA mismatch repair (MMR) genes elevate both base substitutions and insertions/deletions in simple sequence repeats. Data suggest that during replication of simple repeat sequences, polymerase slippage can generate single-strand loops on either the primer or template strand that are subsequently processed by the MMR machinery to prevent insertions and deletions, respectively. In the budding yeast Saccharomyces cerevisiae and mammalian cells, MMR appears to be more efficient at repairing mispairs comprised of loops on the template strand compared to loops on the primer strand. We identified two novel yeast pms1 alleles, pms1-G882E and pms1-H888R, which confer a strong defect in the repair of "primer strand" loops, while maintaining efficient repair of "template strand" loops. Furthermore, these alleles appear to affect equally the repair of 1-nucleotide primer strand loops during both leading- and lagging-strand replication. Interestingly, both pms1 mutants are proficient in the repair of 1-nucleotide loop mispairs in heteroduplex DNA generated during meiotic recombination. Our results suggest that the inherent inefficiency of primer strand loop repair is not simply a mismatch recognition problem but also involves Pms1 and other proteins that are presumed to function downstream of mismatch recognition, such as Mlh1. In addition, the findings reinforce the current view that during mutation avoidance, MMR is associated with the replication apparatus.
Collapse
Affiliation(s)
- Naz Erdeniz
- Molecular and Medical Genetics, Oregon Health and Science University, L103, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
According to classical mendelian genetics, individuals homozygous for an allele always breed true. Lolle et al. report a pattern of non-mendelian inheritance in the hothead (hth) mutant of Arabidopsis thaliana, in which a plant homozygous at a particular locus upon self-crossing produces progeny that are 10% heterozygous; they claim that this is the result of the emerging allele having been reintroduced into the chromosome from a cache of RNA inherited from a previous generation. Here I suggest that these results are equally compatible with a gene conversion that occurred through the use as a template of DNA fragments that were inherited from a previous generation and propagated in archival form in the meristem cells that generate the plant germ lines. This alternative model is compatible with several important observations by Lolle et al..
Collapse
Affiliation(s)
- Animesh Ray
- Keck Graduate Institute, Claremont, California 91711, USA.
| |
Collapse
|
15
|
Qin H, Wu WB, Comeron JM, Kreitman M, Li WH. Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes. Genetics 2005; 168:2245-60. [PMID: 15611189 PMCID: PMC1448744 DOI: 10.1534/genetics.104.030866] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the roles of translational accuracy, translational efficiency, and the Hill-Robertson effect in codon usage bias, we studied the intragenic spatial distribution of synonymous codon usage bias in four prokaryotic (Escherichia coli, Bacillus subtilis, Sulfolobus tokodaii, and Thermotoga maritima) and two eukaryotic (Saccharomyces cerevisiae and Drosophila melanogaster) genomes. We generated supersequences at each codon position across genes in a genome and computed the overall bias at each codon position. By quantitatively evaluating the trend of spatial patterns using isotonic regression, we show that in yeast and prokaryotic genomes, codon usage bias increases along translational direction, which is consistent with purifying selection against nonsense errors. Fruit fly genes show a nearly symmetric M-shaped spatial pattern of codon usage bias, with less bias in the middle and both ends. The low codon usage bias in the middle region is best explained by interference (the Hill-Robertson effect) between selections at different codon positions. In both yeast and fruit fly, spatial patterns of codon usage bias are characteristically different from patterns of GC-content variations. Effect of expression level on the strength of codon usage bias is more conspicuous than its effect on the shape of the spatial distribution.
Collapse
Affiliation(s)
- Hong Qin
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
16
|
Jauert PA, Kirkpatrick DT. Length and sequence heterozygosity differentially affect HRAS1 minisatellite stability during meiosis in yeast. Genetics 2005; 170:601-12. [PMID: 15834153 PMCID: PMC1450406 DOI: 10.1534/genetics.104.026278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Minisatellites, one of the major classes of repetitive DNA sequences in eukaryotic genomes, are stable in somatic cells but destabilize during meiosis. We previously established a yeast model system by inserting the human Ha-ras/HRAS1 minisatellite into the HIS4 promoter and demonstrated that our system recapitulates all of the phenotypes associated with the human minisatellite. Here we demonstrate that meiotic minisatellite tract-length changes are half as frequent in diploid cells harboring heterozygous HRAS1 minisatellite tracts in which the two tracts differ by only two bases when compared to a strain with homozygous minisatellite tracts. Further, this decrease in alteration frequency is entirely dependent on DNA mismatch repair. In contrast, in a diploid strain containing heterozygous minisatellite tract alleles differing in length by three complete repeats, length alterations are observed at twice the frequency seen in a strain with homozygous tracts. Alterations consist of previously undetectable gene conversion events, plus nonparental length alteration events seen previously in strains with homozygous tracts. A strain containing tracts with both base and length heterozygosity exhibits the same level of alteration as a strain containing only length heterozygosity, indicating that base heterozygosity-dependent tract stabilization does not affect tract-length alterations occurring by gene conversion.
Collapse
Affiliation(s)
- Peter A Jauert
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
17
|
Baur M, Hartsuiker E, Lehmann E, Ludin K, Munz P, Kohli J. The meiotic recombination hot spot ura4A in Schizosaccharomyces pombe. Genetics 2005; 169:551-61. [PMID: 15489526 PMCID: PMC1449133 DOI: 10.1534/genetics.104.033647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 10/18/2004] [Indexed: 11/18/2022] Open
Abstract
The meiotic recombination hot spot ura4A (formerly ura4-aim) of Schizosaccharomyces pombe was observed at the insertion of the ura4+ gene 15 kb centromere-proximal to ade6 on chromosome III. Crosses heterozygous for the insertion showed frequent conversion at the heterology with preferential loss of the insertion. This report concerns the characterization of 12 spontaneous ura4A mutants. A gradient of conversion ranging from 18% at the 5' end to 6% at the 3' end was detected. A novel phenomenon also was discovered: a mating-type-related bias of conversion. The allele entering with the h+ parent acts preferentially as the acceptor for conversion (ratio of 3:2). Tetrad analysis of two-factor crosses showed that heteroduplex DNA is predominantly asymmetrical, enters from the 5' end, and more often than not covers the entire gene. Restoration repair of markers at the 5' end was inferred. Random spore analyses of two-factor crosses and normalization of prototroph-recombinant frequencies to physical distance led to the demonstration of map expansion: Crosses involving distant markers yielded recombinant frequencies higher than the sum of the frequencies measured in the subintervals. Finally, marker effects on recombination were defined for two of the ura4A mutations.
Collapse
Affiliation(s)
- Michel Baur
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
19
|
Merker JD, Dominska M, Petes TD. Patterns of Heteroduplex Formation Associated With the Initiation of Meiotic Recombination in the Yeast Saccharomyces cerevisiae. Genetics 2003; 165:47-63. [PMID: 14504217 PMCID: PMC1462766 DOI: 10.1093/genetics/165.1.47] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. Recent physical studies suggest that some recombination events involve heterodupex formation by a mechanism, synthesis-dependent strand annealing (SDSA), that is inherently asymmetric with respect to the DSB site and that leads exclusively to noncrossovers of flanking markers. Below, we demonstrate that many of the recombination events initiated at the HIS4 recombination hotspot are consistent with a variant of the DSBR model in which the extent of heteroduplex on one side of the DSB site is much greater than that on the other. Events that include only one flanking marker in the heteroduplex (unidirectional events) are usually resolved as noncrossovers, whereas events that include both flanking markers (bidirectional events) are usually resolved as crossovers. The unidirectional events may represent SDSA, consistent with the conclusions of others, although other possibilities are not excluded. We also show that the level of recombination reflects the integration of events initiated at several different DSB sites, and we identify a subset of gene conversion events that may involve break-induced replication (BIR) or repair of a double-stranded DNA gap.
Collapse
Affiliation(s)
- Jason D Merker
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
20
|
Jeffreys AJ, Neumann R. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat Genet 2002; 31:267-71. [PMID: 12089523 DOI: 10.1038/ng910] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human DNA diversity arises ultimately from germline mutation that creates new haplotypes that can be reshuffled by meiotic recombination. Reciprocal crossover generates recombinant haplotypes but should not influence the frequencies of alleles in a population. We demonstrate crossover asymmetry at a recombination hot spot in the major histocompatibility complex, whereby reciprocal exchanges in sperm map to different locations in the hot spot. We identify a single-nucleotide polymorphism at the center of the hot spot and show that, when heterozygous, it seems sufficient to cause this asymmetry, apparently by influencing the efficiency of highly localized crossover initiation. As a consequence, crossovers in heterozygotes are accompanied by biased gene conversion, most likely occurring by gap repair, that can also affect nearby polymorphisms through repair of an extended gap. The result is substantial over-transmission of the recombination-suppressing allele and neighboring markers to crossover products. Computer simulations show that this meiotic drive, although weak at the population level, is sufficient to favor eventual fixation of the recombination-suppressing variant. These findings provide an explanation for the relatively uniform widths of human crossover hot spots and suggest that hot spots may be generally prone to extinction by meiotic drive.
Collapse
Affiliation(s)
- Alec J Jeffreys
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|
21
|
Abstract
Homologous recombination is essential during meiosis in most sexually reproducing organisms. In budding yeast, and most likely in other organisms as well, meiotic recombination proceeds via the formation and repair of DNA double-strand breaks (DSBs). These breaks appear to be formed by the Spo11 protein, with assistance from a large number of other gene products, by a topoisomerase-like transesterase mechanism. Recent studies in fission yeast, multicellular fungi, flies, worms, plants, and mammals indicate that the role of Spo11 in meiotic recombination initiation is highly conserved. This chapter reviews the properties of Spo11 and the other gene products required for meiotic DSB formation in a number of organisms and discusses ways in which recombination initiation is coordinated with other events occurring in the meiotic cell.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| |
Collapse
|
22
|
Yeadon PJ, Rasmussen JP, Catcheside DE. Recombination events in Neurospora crassa may cross a translocation breakpoint by a template-switching mechanism. Genetics 2001; 159:571-9. [PMID: 11606534 PMCID: PMC1461815 DOI: 10.1093/genetics/159.2.571] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To assist investigation of the effect of sequence heterology on recombination in Neurospora crassa, we inserted the Herpes simplex thymidine kinase gene (TK) as an unselected marker on linkage group I, giving a gene order of Cen-his-3-TK-cog-lpl. We show here that in crosses heterozygous for TK, conversion of a his-3 allele on one homolog is accompanied by transfer of the heterologous sequence between cog and his-3 from the other homolog, indicating that recombination is initiated centromere-distal of TK. We have identified a 10-nucleotide motif in the cog region that, although unlikely to be sufficient for hotspot activity, is required for high-frequency recombination and, because conversion of silent sequence markers declines on either side, may be the recombination initiation site. Additionally, we have mapped conversion tracts in His(+) progeny of a translocation heterozygote, in which the translocation breakpoint separates cog from the 5' end of his-3. We present molecular evidence of recombination on both sides of the breakpoint. Because recombination is initiated close to cog and the event must therefore cross the translocation breakpoint, we suggest that template switching occurs in some recombination events, with repair synthesis alternating between use of the homolog and the initiating chromatid as template.
Collapse
Affiliation(s)
- P J Yeadon
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | | | | |
Collapse
|
23
|
Abstract
Meiotic recombination events are distributed unevenly throughout eukaryotic genomes. This inhomogeneity leads to distortions of genetic maps that can hinder the ability of geneticists to identify genes by map-based techniques. Various lines of evidence, particularly from studies of yeast, indicate that the distribution of recombination events might reflect, at least in part, global features of chromosome structure, such as the distribution of modified nucleosomes.
Collapse
Affiliation(s)
- T D Petes
- Department of biology, University of North Carolina, Chapel Hill 27599-3280, USA.
| |
Collapse
|
24
|
Clikeman JA, Wheeler SL, Nickoloff JA. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae. Genetics 2001; 157:1481-91. [PMID: 11290705 PMCID: PMC1461601 DOI: 10.1093/genetics/157.4.1481] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single-base differences or insertions <15 bp) in meiosis and mitosis involves mismatch repair of hDNA. The repair of larger loop mismatches in plasmid substrates or arising by replication slippage is inefficient and/or independent of Pms1p/Msh2p-dependent mismatch repair. However, large insertions convert readily (without sectoring) during meiotic recombination, raising the question of whether large insertions convert by repair of large loop mismatches or by gap repair. We show that insertions of 2.2 and 2.6 kbp convert efficiently during DSB-induced mitotic recombination, primarily by Msh2p- and Pms1p-dependent repair of large loop mismatches. These results support models in which Rad51p readily incorporates large heterologies into hDNA. We also show that large heterologies convert more frequently than small heterologies located the same distance from an initiating DSB and propose that this reflects Msh2-independent large loop-specific mismatch repair biased toward loop loss.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
25
|
Abstract
Mismatches, and the proteins that repair them, play multiple roles during meiosis from generating the diversity upon which selection acts to preventing the intermingling of diverged populations and species. The mechanisms by which the mismatch repair proteins accomplish these many roles include gene conversion, reciprocal crossing over, mismatch repair-induced recombination and anti-recombination. This review focuses on recent studies, predominantly in Saccharomyces cerevisiae, that have advanced our understanding of the details of mismatch repair complexes and how they apply to the diverse roles these proteins play in meiosis. These studies have also revealed unexpected and novel functions for some of the mismatch repair proteins.
Collapse
Affiliation(s)
- R H Borts
- Genome Stability Group, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK.
| | | | | |
Collapse
|
26
|
Wang TF, Kleckner N, Hunter N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci U S A 1999; 96:13914-9. [PMID: 10570173 PMCID: PMC24165 DOI: 10.1073/pnas.96.24.13914] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast genome encodes four proteins (Pms1 and Mlh1-3) homologous to the bacterial mismatch repair component, MutL. Using two hybrid-interaction and coimmunoprecipitation studies, we show that these proteins can form only three types of complexes in vivo. Mlh1 is the common component of all three complexes, interacting with Pms1, Mlh2, and Mlh3, presumptively as heterodimers. The phenotypes of single deletion mutants reveal distinct functions for the three heterodimers during meiosis: in a pms1 mutant, frequent postmeiotic segregation indicates a defect in the correction of heteroduplex DNA, whereas the frequency of crossing-over is normal. Conversely, crossing-over in the mlh3 mutant is reduced to approximately 70% of wild-type levels but correction of heteroduplex is normal. In a mlh2 mutant, crossing-over is normal and postmeiotic segregation is not observed but non-Mendelian segregation is elevated and altered with respect to parity. Finally, to a first approximation, the mlh1 mutant represents the combined single mutant phenotypes. Taken together, these data imply modulation of a basic Mlh1 function via combination with the three other MutL homologs and suggest specifically that Mlh1 combines with Mlh3 to promote meiotic crossing-over.
Collapse
Affiliation(s)
- T F Wang
- Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
27
|
Lopes J, Tardieu S, Silander K, Blair I, Vandenberghe A, Palau F, Ruberg M, Brice A, LeGuern E. Homologous DNA exchanges in humans can be explained by the yeast double-strand break repair model: a study of 17p11.2 rearrangements associated with CMT1A and HNPP. Hum Mol Genet 1999; 8:2285-92. [PMID: 10545609 DOI: 10.1093/hmg/8.12.2285] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rearrangements in 17p11.2, responsible for the 1.5 Mb duplications and deletions associated, respectively, with autosomal dominant Charcot-Marie-Tooth type 1A disease (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are a suitable model for studying human recombination. Rearrangements in 17p11.2 are caused by unequal crossing-over between two homologous 24 kb sequences, the CMT1A-REPs, that flank the disease locus and occur in most cases within a 1.7 kb hotspot. We sequenced this hotspot in 28 de novo patients (25 CMT1A and three HNPP), in order to localize precisely, at the DNA sequence level, the crossing-overs. We show that some chimeric CMT1A-REPs in de novo patients (10/28) present conversion of DNA segments associated with the crossing-over. These rearrangements can be explained by the double-strand break (DSB) repair model described in yeast. Fine mapping of the de novo rearrangements provided evidence that the successive steps of this model, heteroduplex DNA formation, mismatch correction and gene conversion, occurred in patients. Furthermore, the model explains 17p11.2 recombinations between chromosome homologues as well as between sister chromatids. In addition, defective mismatch repair of the heteroduplex DNA, observed in two patients, resulted in two heterozygous chimeric CMT1A-REPs which can be explained, as in yeast, by post-meiotic segregation. This work supports the hypothesis that the DSB repair model of DNA exchange may apply universally from yeasts to humans.
Collapse
Affiliation(s)
- J Lopes
- INSERM U289, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nickoloff JA, Sweetser DB, Clikeman JA, Khalsa GJ, Wheeler SL. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast. Genetics 1999; 153:665-79. [PMID: 10511547 PMCID: PMC1460766 DOI: 10.1093/genetics/153.2.665] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.
Collapse
Affiliation(s)
- J A Nickoloff
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
29
|
Vedel M, Nicolas A. CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates. Genetics 1999; 151:1245-59. [PMID: 10101154 PMCID: PMC1460566 DOI: 10.1093/genetics/151.4.1245] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair proteins in meiotic recombination, we performed a physical analysis of meiotic DNA in wild-type and msh2 pms1 strains in the presence or absence of allelic differences at CYS3. Neither the mutations in CYS3 nor the absence of mismatch repair functions affects the frequency and distribution of nearby recombination-initiating DNA double-strand breaks (DSBs). Processing of DSBs is also similar in msh2 pms1 and wild-type strains. We conclude that mismatch repair functions do not control the distribution of meiotic gene conversion events at the initiating steps. In the MSH2 PMS1 background, strains heteroallelic for frameshift mutations in CYS3 exhibit a frequency of gene conversion greater than that observed for either marker alone. Physical analysis revealed no modification in the formation of DSBs, suggesting that this marker effect results from subsequent processing events that are not yet understood.
Collapse
Affiliation(s)
- M Vedel
- Institut Curie, Section de Recherche, Compartimentation et Dynamique Cellulaires, UMR144, Centre National de la Recherche Scientifique, 75248 Paris Cedex 05, France
| | | |
Collapse
|
30
|
Kirkpatrick DT, Dominska M, Petes TD. Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae. Genetics 1998; 149:1693-705. [PMID: 9691029 PMCID: PMC1460284 DOI: 10.1093/genetics/149.4.1693] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic recombination in yeast is associated with heteroduplex formation. Heteroduplexes formed between nonidentical DNA strands contain DNA mismatches, and most DNA mismatches in wild-type strains are efficiently corrected. Although some patterns of mismatch correction result in non-Mendelian segregation of the heterozygous marker (gene conversion), one predicted pattern of correction (restoration-type repair) results in normal Mendelian segregation. Using a yeast strain in which a marker leading to a well-repaired mismatch is flanked by markers that lead to poorly repaired mismatches, we present direct evidence for restoration-type repair in yeast. In addition, we find that the frequency of tetrads with conversion-type repair is higher for a marker at the 5' end of the HIS4 gene than for a marker in the middle of the gene. These results suggest that the ratio of conversion-type to restoration-type repair may be important in generating gradients of gene conversion (polarity gradients).
Collapse
Affiliation(s)
- D T Kirkpatrick
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
31
|
Lamb BC. Gene conversion disparity in yeast: its extent, multiple origins, and effects on allele frequencies. Heredity (Edinb) 1998; 80 ( Pt 5):538-52. [PMID: 9650278 DOI: 10.1046/j.1365-2540.1998.00331.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extent of disparity in gene conversion direction in yeast (Saccharomyces cerevisiae) is important for recombination mechanisms and for effects of conversion on allele frequencies in populations. An analysis of published and unpublished data demonstrates that yeast frequently shows significant and extensive conversion disparity, contrary to many published statements. All types of mutation--base-substitutions, frameshifts and longer deletions and additions--can show significant 6:2/2:6 and/or 5:3/3:5 disparity. There was little correlation between the occurrence of 6:2/2:6 and 5:3/3:5 disparities; when both were significant, they were more often in opposite directions than in the same direction. Surprisingly, there was little correlation between a mutation's molecular nature and its disparity properties, which generally seem unpredictable. Disparity in yeast has multiple origins. From the equations discussed, all disparity types can be explained by one or more of: correction direction disparity, chromatid invasion disparity (including cases caused by different frequencies of double-strand breaks or gaps in nonsister homologous chromatids), strand invasion disparity, and different correction frequencies for the two types of mispair for a heterozygous mutation. Levels of overall disparity and of conversion frequency mean that conversion must often change allele frequencies in sexually reproducing yeast populations.
Collapse
Affiliation(s)
- B C Lamb
- Biology Department, Imperial College of Science, Technology and Medicine, London, U.K.
| |
Collapse
|
32
|
Abstract
In sexually reproducing organisms, homologous recombination increases genetic diversity in gametes and ensures proper chromosome segregation. Recent publications have provided details of the molecular intermediates and proteins involved, the control of the distribution of recombination events at the chromosomal level, and the surveillance mechanisms that coordinate recombination with the meiotic cell cycle.
Collapse
Affiliation(s)
- K N Smith
- Institut Curie, Section de Recherche, CNRS UMR144, Paris, France
| | | |
Collapse
|
33
|
Abstract
During the pachytene stage of meiotic prophase in male mammals, the X and Y chromosomes become transcriptionally inactive and establish a chromatin domain, the sex body, that is visually distinct from the transcriptionally active autosomes. We used objective criteria to assess these chromatin differences by DNase I sensitivity (DS) of sex chromosome and autosomal sequences at both the cytological and molecular levels. For cytological studies, in situ nick translation techniques were used on air-dried preparations of testicular cells. For molecular studies, nuclei from pachytene spermatocytes were subjected to nuclease sensitivity assays. Both sex-linked and autosomal sequences were assessed, including some gene sequences that are expressed and some that are not expressed in pachytene spermatocytes. There was a wide range of DS in different genomic sequences; however, the sex-linked sequences generally were less nuclease sensitive than were autosomal sequences. Interestingly, a hot spot of recombination (within the Eb gene) showed a high level of nuclease sensitivity, while a cold spot of recombination (centromeric satellite region) exhibited lower sensitivity, more similar to that of sex-linked sequences. We also examined the nuclease sensitivity of a tyrosinase transgene insert, TyBS. In one line of mice, the transgene insert is X-linked, whereas in another, it is autosomal. The transgene was less nuclease sensitive when X-linked than as an autosomal insert. These results support the hypothesis that in pachytene spermatocytes the XY chromosome pair is more condensed and inaccessible to enzymatic digest, whereas the autosomal chromatin is in a more open configuration. In addition, we examined the nuclease sensitivity of some of the same genes in the earlier leptotene/zygotene prophase stage, when the sex chromatin is not maximally condensed. We found that while autosomal gene nuclease sensitivity was equivalent to that at the pachytene stage, X-linked sequences were more nuclease sensitive. Overall, these differences in chromatin nuclease sensitivity correlate with differences in meiotic recombination activity and may be mechanistically related.
Collapse
Affiliation(s)
- T Wiltshire
- Dept. of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville 37996-0840, USA
| | | | | |
Collapse
|
34
|
Mutation pressure, natural selection, and the evolution of base composition in Drosophila. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-011-5210-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
35
|
|
36
|
Schär P, Herrmann G, Daly G, Lindahl T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev 1997; 11:1912-24. [PMID: 9271115 PMCID: PMC316416 DOI: 10.1101/gad.11.15.1912] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis.
Collapse
Affiliation(s)
- P Schär
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, UK
| | | | | | | |
Collapse
|
37
|
Boulton A, Myers RS, Redfield RJ. The hotspot conversion paradox and the evolution of meiotic recombination. Proc Natl Acad Sci U S A 1997; 94:8058-63. [PMID: 9223314 PMCID: PMC21556 DOI: 10.1073/pnas.94.15.8058] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1997] [Accepted: 05/30/1997] [Indexed: 02/04/2023] Open
Abstract
Studies of meiotic recombination have revealed an evolutionary paradox. Molecular and genetic analysis has shown that crossing over initiates at specific sites called hotspots, by a recombinational-repair mechanism in which the initiating hotspot is replaced by a copy of its homolog. We have used computer simulations of large populations to show that this mechanism causes active hotspot alleles to be rapidly replaced by inactive alleles, which arise by rare mutation and increase by recombination-associated conversion. Additional simulations solidified the paradox by showing that the known benefits of recombination appear inadequate to maintain its mechanism. Neither the benefits of accurate segregation nor those of recombining flanking genes were sufficient to preserve active alleles in the face of conversion. A partial resolution to this paradox was obtained by introducing into the model an additional, nonmeiotic function for the sites that initiate recombination, consistent with the observed association of hotspots with functional sites in chromatin. Provided selection for this function was sufficiently strong, active hotspots were able to persist in spite of frequent conversion to inactive alleles. However, this explanation is unsatisfactory for two reasons. First, it is unlikely to apply to obligately sexual species, because observed crossover frequencies imply maintenance of many hotspots per genome, and the viability selection needed to preserve these would drive the species to extinction. Second, it fails to explain why such a genetically costly mechanism of recombination has been maintained over evolutionary time. Thus the paradox persists and is likely to be resolved only by significant changes to the commonly accepted mechanism of crossing over.
Collapse
Affiliation(s)
- A Boulton
- Department of Zoology, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
38
|
Goyon C, Barry C, Grégoire A, Faugeron G, Rossignol JL. Methylation of DNA repeats of decreasing sizes in Ascobolus immersus. Mol Cell Biol 1996; 16:3054-65. [PMID: 8649417 PMCID: PMC231300 DOI: 10.1128/mcb.16.6.3054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Ascobolus immersus, DNA duplications are subject to the process of methylation induced premeiotically (MIP), which methylates the cytosine residues within the repeats and results in reversible gene silencing. The triggering of MIP requires pairing of the repeats, and its detection requires maintenance of the resulting methylation. MIP of kilobase-size duplications occurs frequently and leads to the methylation of all C residues in the repeats, including those belonging to non-CpG sequences. Using duplications of decreasing sizes, we observed that tandem repeats never escaped MIP when larger than 630 bp and showed a sudden and drastic drop in MIP frequencies when their sizes decreased from 630 to 317 bp. This contrasted with the progressive decrease of MIP frequencies observed with ectopic repeats, in which apparently the search for homology influences the MIP triggering efficiency. The minimal size actually required for a repeat to undergo detectable MIP was found to be close to 300 bp. Genomic sequencing and Southern hybridization analyses using restriction enzymes sensitive to C methylation showed a loss of methylation at non-CpG sites in short DNA segments, methylation being restricted to a limited number of CpG dinucleotides. Our data suggest the existence of two distinct mechanisms underlying methylation maintenance, one responsible for methylation at CpG sites and the other responsible for methylation at non-CpG sites.
Collapse
Affiliation(s)
- C Goyon
- Institut de Génétique et Microbiologie, Unité de Recherche Associée 1354, Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
The function of meiotic recombination has remained controversial, despite recent inroads into mechanisms. Ideas concerning a possible role of recombination in the elimination or efficient incorporation of mutations have been backed by theoretical studies but have lacked empirical support. Recent investigations into the basis for local variations in recombination frequency in yeast have uncovered a strong association between recombination initiation sites and transcriptional regulatory sequences. Other recent studies indicate a strong correlation between transcription and mutation rates in yeast genes. Taken together, these data imply that distributions of recombination and mutation frequencies may be strongly correlated. This suggests that recombination may be targeted to genomic sites of high mutation frequency; such a 'mutation-tracking' function would clearly aid in the shuffling of mutations to break up unfavorable and create favorable allelic combinations. Moreover, recent insights into the mechanism of gene conversion in yeast reveal a very strong inherent bias in favor of alleles on the non-initiating homolog. Combined with mutation tracking, these findings suggest a novel and general mechanism by which allelic gene conversion may act to eliminate mutations.
Collapse
Affiliation(s)
- B D McKee
- Department of Biochemistry and Molecular and Cellular Biology, University of Tennessee, Knoxville 37996, USA.
| |
Collapse
|
40
|
Zahn-Zabal M, Kohli J. The distance-dependence of the fission yeast ade6-M26 marker effect in two-factor crosses. Curr Genet 1996; 29:530-6. [PMID: 8662192 DOI: 10.1007/bf02426957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Random spore analysis of crosses between a strain bearing the ade6-M26 hotspot mutation and strains bearing other ade6 mutations was performed. Recombinant prototroph frequencies increase with increasing distance from M26 for mutations both 5' and 3' of M26. Maximum prototroph frequencies are obtained for mutations lying more than 700 nucleotides downstream from M26. Similar results are obtained for crosses with the ade6-M375 control mutation, but the prototroph frequencies are lower. The factor of stimulation of recombination by M26 as compared to the M375 control (M26 marker effect) also displays distance-dependence. These results are discussed in the context of the mechanism of M26 recombination, as well as in relation to recombination initiation, hybrid DNA formation, and mismatch repair at ade6. Keywords Conversion middle dot M26 hotspot middle dot Recombination middle dot Schizosaccharomyces pombe
Collapse
Affiliation(s)
- M Zahn-Zabal
- Institute of General Microbiology, University of Bern, Baltzer-Strasse 4, CH-3012 Bern, Switzerland
| | | |
Collapse
|
41
|
Ashley T, Plug AW, Xu J, Solari AJ, Reddy G, Golub EI, Ward DC. Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 1995; 104:19-28. [PMID: 7587590 DOI: 10.1007/bf00352222] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple, apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chicken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis do not appear to be species specific, but intrinsic to the meiotic process.
Collapse
Affiliation(s)
- T Ashley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Cerutti H, Johnson AM, Boynton JE, Gillham NW. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol 1995; 15:3003-11. [PMID: 7760798 PMCID: PMC230531 DOI: 10.1128/mcb.15.6.3003] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. The endosymbiotic origin of plastids and the recent finding of an Arabidopsis nuclear gene, encoding a chloroplast-localized protein homologous to Escherichia coli RecA, suggest that the plastid recombination system is related to its eubacterial counterpart. Therefore, we examined whether dominant negative mutants of the E. coli RecA protein can interfere with the activity of their putative homolog in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. Transformants expressing these mutant RecA proteins showed reduced survival rates when exposed to DNA-damaging agents, deficient repair of chloroplast DNA, and diminished plastid DNA recombination. These results strongly support the existence of a RecA-mediated recombination system in chloroplasts. We also found that the wild-type E. coli RecA protein enhances the frequency of plastid DNA recombination over 15-fold, although it has no effect on DNA repair or cell survival. Thus, chloroplast DNA recombination appears to be limited by the availability of enzymes involved in strand exchange rather than by the level of initiating DNA substrates. Our observations suggest that a primary biological role of the recombination system in plastids is in the repair of their DNA, most likely needed to cope with damage due to photooxidation and other environmental stresses. This hypothesis could explain the evolutionary conservation of DNA recombination in chloroplasts despite the predominantly uniparental inheritance of their genomes.
Collapse
Affiliation(s)
- H Cerutti
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|