1
|
Noble AR, Hogg K, Suman R, Berney DM, Bourgoin S, Maitland NJ, Rumsby MG. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br J Cancer 2019; 121:1016-1026. [PMID: 31673104 PMCID: PMC6964697 DOI: 10.1038/s41416-019-0610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Collapse
Affiliation(s)
- Amanda R Noble
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen Hogg
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Rakesh Suman
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel M Berney
- Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sylvain Bourgoin
- Centre de Recherche du CHU de Québec, Axe des Maladies Infectieuses et Immunitaires, local T1-58, 2705 boulevard Laurier, Québec, G1V 4G2, QC, Canada
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin G Rumsby
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Ramenskaia GV, Melnik EV, Petukhov AE. [Phospholipase D: its role in metabolism processes and disease development]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:84-93. [PMID: 29460838 DOI: 10.18097/pbmc20186401084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase D (PLD) is one of the key enzymes that catalyzes the hydrolysis of cell membrane phospholipids. In this review current knowledge about six human PLD isoforms, their structure and role in physiological and pathological processes is summarized. Comparative analysis of PLD isoforms structure is presented. The mechanism of the hydrolysis and transphosphatidylation performed by PLD is described. The PLD1 and PLD2 role in the pathogenesis of some cancer, infectious, thrombotic and neurodegenerative diseases is analyzed. The prospects of PLD isoform-selective inhibitors development are shown in the context of the clinical usage and the already-existing inhibitors are characterized. Moreover, the formation of phosphatidylethanol (PEth), the alcohol abuse biomarker, as the result of PLD-catalyzed phospholipid transphosphatidylation is considered.
Collapse
Affiliation(s)
- G V Ramenskaia
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - E V Melnik
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - A E Petukhov
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia; Moscow Research and Practical Centre for Narcology, Moscow, Russia
| |
Collapse
|
3
|
Schröck A, Henzi A, Bütikofer P, König S, Weinmann W. Determination of the formation rate of phosphatidylethanol by phospholipase D (PLD) in blood and test of two selective PLD inhibitors. Alcohol 2018; 73:1-7. [PMID: 30103144 DOI: 10.1016/j.alcohol.2018.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidylethanol (PEth) is an alcohol biomarker formed from phosphatidylcholine (PC) by the enzyme phospholipase D (PLD) in the presence of ethanol. A drinking study revealed individual differences in maximum PEth levels after drinking to a targeted blood alcohol concentration (BAC) of 0.1%. This seemed to be due to different PLD activities in the tested persons. Furthermore, post-sampling formation of PEth occurred in blood samples, still containing alcohol. Therefore, a standardized in vitro test for measuring individual PEth formation rates was developed. Two PLD inhibitors were tested for their potency to inhibit post-sampling PEth formation. PEth-negative blood samples were collected from a volunteer. Ethanol was added in different concentrations (0.01-0.3% BAC) directly after blood sampling. The specimens were incubated at 37 °C. Aliquots were taken at the start of the incubation, and every hour until 8 h after start of incubation, and one sample was taken on subsequent days over 1 week. PEth 16:0/18:1 and PEth 16:0/18:2 were determined by online SPE-LC-MS/MS. Furthermore, this test system was applied to blood samples of 12 volunteers. For the inhibition tests, fresh blood (spiked with 0.1% ethanol) was spiked with 30, 300, 3000, or 30,000 nM of either halopemide or 5-fluoro-2-indolyl-deschlorohalopemide (FIPI), and incubated at 37 °C. PEth concentrations were determined hourly over 5 h on the first day and once on day 2 and day 3. PEth formation was linear in the first 7 h of incubation and dependent on the alcohol concentration. The formation rates of PEth 16:0/18:1 were 0.002 μmol L-1 h-1 (0.01% BAC), 0.016 μmol L-1 h-1 (0.1% BAC), 0.025 μmol L-1 h-1 (0.2% BAC), and 0.029 μmol L-1 h-1 (0.3% BAC). For PEth 16:0/18:2, the formation rates were 0.002 μmol L-1 h-1 (0.01% BAC), 0.019 μmol L-1 h-1 (0.1% BAC), 0.025 μmol L-1 h-1 (0.2% BAC), and 0.030 μmol L-1 h-1 (0.3% BAC). Maximum concentrations reached 431 ng/mL (PEth 16:0/18:1) and 496 ng/mL (PEth 16:0/18:2) at 0.3% BAC after 3 days. Maximum velocity (vmax) was not reached under these conditions. PEth formation in blood of the 12 volunteers ranged between 0.011 and 0.025 μmol L-1 h-1 for PEth 16:0/18:1 and between 0.014 and 0.021 μmol L-1 h-1 for PEth 16:0/18:2. PEth formation in human blood was inhibited by halopemide in a concentration-dependent manner. However, a complete inhibition was not achieved by the applied maximum concentration of 30,000 nM. FIPI showed a better inhibition of PEth formation. A complete inhibition could be achieved by a concentration of 30,000 nM for the first 24 h (for PEth 16:0/18:1) and for 48 h (for PEth 16:0/18:2). Formation of PEth was found to be dependent on the BAC. As a consequence, it is essential to inhibit PLD activity after blood collection to avoid post-sampling formation of PEth in blood samples with a positive BAC. Inhibition of PEth formation was more effective using FIPI, compared to halopemide.
Collapse
Affiliation(s)
- Alexandra Schröck
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, c/o Theodor Kocher Institute, Freiestrasse 1, 3012 Bern, Switzerland
| | - Anna Henzi
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Stefan König
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Wolfgang Weinmann
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. Br J Cancer 2017; 118:189-199. [PMID: 29136407 PMCID: PMC5785744 DOI: 10.1038/bjc.2017.391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. Methods: PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. Results: PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the same specific PLD1 inhibitor significantly reduced colony formation. Conclusions: A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.
Collapse
|
5
|
Abstract
Phospholipase D (PLD) enzymes are one source of receptor-generated phosphatidic acid (PtdOH),which may subsequently be metabolized to diacylglycerol (DAG) and lysophosphatidic acid. There are other pathways that lead to PtdOH generation, but differences in pathways and in the acyl composition of the products seem to provide some specificity. Both direct and indirect inhibitors of PLD activity have been identified despite a long-held suspicion that this pathway was undruggable. The identification of raloxifene and halopemide as direct inhibitors was followed by the systematic development of isoenzyme-preferring compounds that have been used to further differentiate the functions of PLD1 and PLD2. PLD2 in host cells has been associated with viral entry processes and innate immune response pathways such that inhibition blocks efficient infection. This PLD2 pathway has been linked to autophagy via AKT kinases. As a potential target in antiretroviral therapy, PLD1 works through the CAD enzyme (which contains carbamoyl aspartate synthase, aspartate transcarbamylase and dihydro-orotase domains) to modulate pyrimidine biosynthesis. PLD activity and expression have been shown to be upregulated in several types of human cancers, in which PLD enzymes function downstream of a variety of known oncogenes. Inhibition of PtdOH production has a marked effect on tumorigenesis and malignant invasion. PLD1, PLD2 and PLD3 have each been suggested to have a role in Alzheimer disease and other neurodegenerative conditions, but a mechanism has not yet emerged to explain the roles of these proteins in central nervous system pathophysiology.
Lipid second messengers such as phosphatidic acid (PtdOH) have a role in a wide range of pathological processes, and phospholipase D (PLD) enzymes are one of the major sources of signal-activated PtdOH generation. In this Review, Brown, Thomas and Lindsley discuss the development of PLD inhibitors, with a focus on isoform-specific inhibitors, and their potential applications in the treatment of cancer, neurodegeneration and infection. Lipid second messengers have essential roles in cellular function and contribute to the molecular mechanisms that underlie inflammation, malignant transformation, invasiveness, neurodegenerative disorders, and infectious and other pathophysiological processes. The phospholipase D (PLD) isoenzymes PLD1 and PLD2 are one of the major sources of signal-activated phosphatidic acid (PtdOH) generation downstream of a variety of cell-surface receptors, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and integrins. Recent advances in the development of isoenzyme-selective PLD inhibitors and in molecular genetics have suggested that PLD isoenzymes in mammalian cells and pathogenic organisms may be valuable targets for the treatment of several human diseases. Isoenzyme-selective inhibitors have revealed complex inter-relationships between PtdOH biosynthetic pathways and the role of PtdOH in pathophysiology. PLD enzymes were once thought to be undruggable owing to the ubiquitous nature of PtdOH in cell signalling and concerns that inhibitors would be too toxic for use in humans. However, recent promising discoveries suggest that small-molecule isoenzyme-selective inhibitors may provide novel compounds for a unique approach to the treatment of cancers, neurodegenerative disorders and other afflictions of the central nervous system, and potentially serve as broad-spectrum antiviral and antimicrobial therapeutics.
Collapse
|
6
|
Stegner D, Thielmann I, Kraft P, Frohman MA, Stoll G, Nieswandt B. Pharmacological Inhibition of Phospholipase D Protects Mice From Occlusive Thrombus Formation and Ischemic Stroke—Brief Report. Arterioscler Thromb Vasc Biol 2013; 33:2212-7. [DOI: 10.1161/atvbaha.113.302030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective—
We recently showed that mice lacking the lipid signaling enzyme phospholipase (PL) D1 or both PLD isoforms (PLD1 and PLD2) were protected from pathological thrombus formation and ischemic stroke, whereas hemostasis was not impaired in these animals. We sought to assess whether pharmacological inhibition of PLD activity affects hemostasis, thrombosis, and thrombo-inflammatory brain infarction in mice.
Approach and Results—
Treatment of platelets with the reversible, small molecule PLD inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI), led to a specific blockade of PLD activity that was associated with reduced α-granule release and integrin activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-treated mice had smaller infarct sizes and significantly better motor and neurological function 24 hours after transient middle cerebral artery occlusion. This protective effect was not associated with major intracerebral hemorrhage or prolonged tail bleeding times.
Conclusions—
These results provide the first evidence that pharmacological PLD inhibition might provide a safe therapeutic strategy to prevent arterial thrombosis and ischemic stroke.
Collapse
Affiliation(s)
- David Stegner
- From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.)
| | - Ina Thielmann
- From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.)
| | - Peter Kraft
- From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.)
| | - Michael A. Frohman
- From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.)
| | - Guido Stoll
- From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.)
| | - Bernhard Nieswandt
- From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.)
| |
Collapse
|
7
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
8
|
Monovich L, Mugrage B, Quadros E, Toscano K, Tommasi R, LaVoie S, Liu E, Du Z, LaSala D, Boyar W, Steed P. Optimization of Halopemide for Phospholipase D2 inhibition. Bioorg Med Chem Lett 2007; 17:2310-1. [PMID: 17317170 DOI: 10.1016/j.bmcl.2007.01.059] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/12/2007] [Accepted: 01/18/2007] [Indexed: 11/25/2022]
Abstract
Halopemide, which was identified by HTS to inhibit phospholipase D2 (PLD2), provided the basis for an exploratory effort to identify potent inhibitors of PLD2 for use as inflammatory mediators. Parallel synthesis and purification were utilized to rapidly identify orally available amide analogs derived from indole 2-carboxylic acids with superior potency versus PLD2.
Collapse
Affiliation(s)
- Lauren Monovich
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cantineau R, Guillaume M, Damhaut P, Lemaire C, Plenevaux A, Gauthier F, Pourrias B, Christiaens L. Synthesis and biodistribution of [5-131I]iodotropapride: a potential D2 dopamine receptor imaging agent. Nucl Med Biol 1994; 21:255-62. [PMID: 9234291 DOI: 10.1016/0969-8051(94)90017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
[5-131I]Iodotropapride is a benzamidic compound which displays high affinity and selectivity for dopaminergic receptors. It was prepared from the corresponding brominated compound by a nucleophilic substitution with [131I]iodine (t1/2 = 8.02 days, E gamma = 364 keV) based on the use of Cu(I) as catalyst and high specific activity of [131I]NaI. After i.v. injection in rats the tracer crosses the blood-brain barrier (0.42 +/- 0.06% of injected dose in the total brain) and demonstrates a high affinity binding to the striatum. The striatum-to-cerebellum ratio increases with time and reaches values of 9 and 22 at 30 and 120 min after injection, respectively. This specific uptake in the striatum is saturable and can be blocked by pretreatment with different D2 antagonists. When labeled with 123I (t1/2 = 13 h, E1 = 159 keV), the corresponding [123I]iodotropapride may be useful for the investigation of the D2 dopamine receptors in humans with single photon emission computer tomography (SPECT).
Collapse
Affiliation(s)
- R Cantineau
- Cyclotron Research Center, Liege University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Damhaut P, Cantineau R, Lemaire C, Plenevaux A, Christiaens L, Guillaume M. 2- and 4-[18F]fluorotropapride, two specific D2 receptor ligands for positron emission tomography: N.C.A. syntheses and animal studies. INTERNATIONAL JOURNAL OF RADIATION APPLICATIONS AND INSTRUMENTATION. PART A, APPLIED RADIATION AND ISOTOPES 1992; 43:1265-74. [PMID: 1330979 DOI: 10.1016/0883-2889(92)90205-s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tropapride, (exo)-2,3-dimethoxy-N-[8-(phenylmethyl)-8- azabicyclo[3.2.1]oct-3-yl]benzamide hydrochloride, has been labeled with fluorine-18 at the 2- and 4-positions of its benzylic group. Two synthetic pathways were investigated: the first one required the alkylation of the norbenzyl precursor with 2- or 4-[18F]fluorobenzyl bromide (radiochemical yield of 5% EOB, 180 min); the second method consisted of a reductive amination of norbenzyl tropapride with 2- or 4-[18F]fluorobenzaldehyde (20% EOB, 110 min). In both cases, the specific activity was found to be greater than 1 Ci/mumol (EOS). Animal studies in rats showed the percentage of the injected dose localizing in the whole brain to be 0.6 +/- 0.09 and 0.2 +/- 0.03 at 2 h post injection for the para- and the ortho-[18F]fluoro analogs of tropapride respectively. Cerebral biodistribution studies showed at 4 h a striatum uptake of 5 +/- 0.7% of the injected dose per gram of striatum for the para derivative with a low fixation into the frontal cortex and the cerebellum (% ID/g FC < 0.4 and % ID/g Cb < 0.3). The selectivity of 4-[18F]fluorotropapride for D2 dopaminergic sites was demonstrated through blocking experiments with ketanserin, spiperone and halopemide. The saturability was confirmed by the use of variable specific activities. These preliminary results showed that 4-[18F]fluorotropapride can be considered as a potent radiopharmaceutical for the study of the dopaminergic system with PET.
Collapse
Affiliation(s)
- P Damhaut
- Cyclotron Research Center, Liège University, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Gust CM, Hemrick-Luecke SK, Fuller RW. Endocrine and neurochemical effects of (+)-PHNO, a dopamine D2 agonist. J Neural Transm (Vienna) 1989; 75:11-20. [PMID: 2563751 DOI: 10.1007/bf01250640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The naphthoxazine compound, (+)-PHNO, is a dopamine D2 receptor agonist which acts within the central nervous system. The effects of this drug on serum concentrations of corticosterone and prolactin and on brain concentrations of catecholamines and some of their metabolites were determined in male rats. Administration of (+)-PHNO in doses ranging from 3-300 micrograms/kg i.p. resulted in increased serum corticosterone, decreased serum prolactin and decreased concentrations of the dopamine metabolites, DOPAC and HVA, in the brain. At the higher doses of (+)-PHNO, concentrations of MHPG sulfate in the brain stem were increased and hypothalamic epinephrine concentrations were decreased. Pretreatment with centrally acting dopamine antagonists (spiperone or haloperidol) prevented the (+)-PHNO-induced changes in serum corticosterone, prolactin and brain catecholamines. In contrast, pretreatment with halopemide, a dopamine antagonist which penetrates poorly into the brain, was unable to block the effects of (+)-PHNO on serum corticosterone and brain catecholamines. These data show that (+)-PHNO, a dopamine agonist structurally unrelated to other dopamine agonists, acts centrally to affect serum corticosterone and brain catecholamines.
Collapse
Affiliation(s)
- C M Gust
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | | | | |
Collapse
|